Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Heat shields for economical aircrafts


Environmentally friendly: IWS Dresden ceramic coatings can reduce engine exhaust gases

To make aircrafts more economical, environmentally friendly and robust, Fraunhofer engineers from Dresden have developed a new ceramic heat shield technology. In this process, a powder of yttrium-stabilized zirconium oxide (YSZ) is added to water to form a suspension.

Turbine blade with a thin ceramic coating of yttrium-stabilized zirconium oxide (YSZ): such a thermal barrier coating allows a higher operating temperature in the turbine.

© Fraunhofer IWS Dresden

Dr. Laura Toma examines a turbine blade coated by means of suspension spraying (in the background: the suspension feeder developed at Fraunhofer IWS).

© Fraunhofer IWS Dresden

Quickly and cost-effectively this liquid powder mixture can be sprayed onto turbine blades or other aircraft parts. Such and similar thermal barrier coatings (TBCs) facilitate aircraft engines, which consume less fuel and do not contaminate the atmosphere as much.

Headed by Dr. Maria Barbosa a team from the Fraunhofer Institute for Material and Beam Technology IWS Dresden has now implemented the new technology into industrial application together with the Swiss plant manufacturer AMT.

The IWS researchers see great potential for their suspension spraying process in the aerospace industry, but also in the semiconductor industry and many other sectors.

Particularly durable and nevertheless inexpensive protective coatings possible

"This allows high-quality and durable protective coatings even on large components at comparatively low cost," emphasizes IWS engineer Dr. Barbosa.

"By spraying suspensions instead of powder, we can use materials with very small particles, not previously suitable for this purpose. At this point, we establish a bridge between the state-of-the-art coating processes, all of which have their advantages and disadvantages. In the future, it will also be possible to process novel material compositions."

In order to generate such thermal barrier coatings, two technology paths are mainly used so far: Some companies process the components with electron beam evaporators ("EB-PVD") in vacuum chambers. This results in very high-quality and durable coatings. But this process is expensive, especially for coating very large components.

The second technology path involves atmospheric plasma spraying (APS). Powder is melted in a plasma jet and sprayed onto the component. APS is rather inexpensive because it does not require vacuum chambers. But the protective layers produced in this way are not as resistant.

Fine powders can also be sprayed if mixed properly

With the "YSZ suspension spraying", the IWS researchers have now developed an alternative process to use a very fine ceramic powder made of yttrium-stabilized zirconium oxide. The grains in this powder have a diameter of only one micrometer or even smaller. Such particularly fine powders would agglomerate very quickly in classical processing methods and cause clogging of the machine hoses.

The engineers therefore mix a suspension with water or alcohol. In this way, the particles can be sprayed. The result is a shielding layer that is about 500 micrometers (thousandths of a millimeter) thick. Since no vacuum is required here, the costs remain rather low. Also, large aircraft components can be coated at relatively high speeds.

A coated aircraft turbine can operate at higher temperatures than an uncoated aggregate. For example, the solution developed by Fraunhofer IWS could raise the operating temperature of a turbine by around 150 degrees at comparatively low cost. As a result, it increases efficiency, extends its service life and reduces cooling costs. The bottom line is lower fuel consumption.

"The environment is also less polluted since the fuel in the improved engines burns more efficiently, which reduces fuel consumption and accordingly fewer pollutants are emitted," estimates Dr. Barbosa. In order to understand another advantage of new engine coatings, it is worth travelling back in time to 2010: When the Icelandic volcano Eyjafjallajökull erupted, it paralyzed air traffic in half of Europe.

In addition to the visibility problems caused by the volcanic ash being hurled up, the airlines were also concerned about potential turbine damage. This ash contains calcium magnesium aluminum silicates (CMAS), similar to the no less harmful fly ash. If this material melts in an unprotected combustion chamber, it can cause considerable damage.

Aircraft sacrificial layer to protect from volcanic eruption

It is precisely against this damage that a high-quality additional layer can help, which does not flake off again immediately. The suspension spraying process developed at the IWS also addresses this problem. "For this application, we work together with the German Aerospace Center and the Technische Universität Dresden," reports Dr. Maria Barbosa.

"We want to jointly develop a 'sacrificial layer' so that ash and sand cannot immediately damage the turbine blade itself. This will enable aero planes to reach their destination safely even after a volcanic eruption".

The IWS process is also attracting great interest in the semiconductor industry. For instance in chip production, the large microelectronics factories use plasma etching chambers. In these chambers, aggressive fluorine compounds repeatedly destroy the chamber walls. With innovative coatings from Dresden, plant constructors plan to better protect the interior of the machines against corrosion in the future.

"We are noticing a large and growing demand from industry for our process – and this from many sectors," emphasizes engineer Dr. Maria Barbosa. "We now envisage opening up further application possibilities. Together with small and medium-sized companies, we are working on an IGF project to make carbide such as tungsten carbide sprayable in a cobalt matrix.

Wissenschaftliche Ansprechpartner:

Dr. Maria Manuel Barbosa
Group Manager Thermal Spraying
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS
Phone +49 351 83391-3429
Winterbergstraße 28, 01277 Dresden 


Markus Forytta | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

More articles from Materials Sciences:

nachricht Printing complex cellulose-based objects
27.03.2020 | ETH Zurich

nachricht A key development in the drive for energy-efficient electronics
24.03.2020 | University of Leeds

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

Latest News

Extreme high-frequency signals enable terabits-per-second data links

01.04.2020 | Physics and Astronomy

The architecture of a 'shape-shifting' norovirus

01.04.2020 | Life Sciences

Hubble finds best evidence for elusive mid-size black hole

01.04.2020 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>