Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Heat shields for economical aircrafts


Environmentally friendly: IWS Dresden ceramic coatings can reduce engine exhaust gases

To make aircrafts more economical, environmentally friendly and robust, Fraunhofer engineers from Dresden have developed a new ceramic heat shield technology. In this process, a powder of yttrium-stabilized zirconium oxide (YSZ) is added to water to form a suspension.

Turbine blade with a thin ceramic coating of yttrium-stabilized zirconium oxide (YSZ): such a thermal barrier coating allows a higher operating temperature in the turbine.

© Fraunhofer IWS Dresden

Dr. Laura Toma examines a turbine blade coated by means of suspension spraying (in the background: the suspension feeder developed at Fraunhofer IWS).

© Fraunhofer IWS Dresden

Quickly and cost-effectively this liquid powder mixture can be sprayed onto turbine blades or other aircraft parts. Such and similar thermal barrier coatings (TBCs) facilitate aircraft engines, which consume less fuel and do not contaminate the atmosphere as much.

Headed by Dr. Maria Barbosa a team from the Fraunhofer Institute for Material and Beam Technology IWS Dresden has now implemented the new technology into industrial application together with the Swiss plant manufacturer AMT.

The IWS researchers see great potential for their suspension spraying process in the aerospace industry, but also in the semiconductor industry and many other sectors.

Particularly durable and nevertheless inexpensive protective coatings possible

"This allows high-quality and durable protective coatings even on large components at comparatively low cost," emphasizes IWS engineer Dr. Barbosa.

"By spraying suspensions instead of powder, we can use materials with very small particles, not previously suitable for this purpose. At this point, we establish a bridge between the state-of-the-art coating processes, all of which have their advantages and disadvantages. In the future, it will also be possible to process novel material compositions."

In order to generate such thermal barrier coatings, two technology paths are mainly used so far: Some companies process the components with electron beam evaporators ("EB-PVD") in vacuum chambers. This results in very high-quality and durable coatings. But this process is expensive, especially for coating very large components.

The second technology path involves atmospheric plasma spraying (APS). Powder is melted in a plasma jet and sprayed onto the component. APS is rather inexpensive because it does not require vacuum chambers. But the protective layers produced in this way are not as resistant.

Fine powders can also be sprayed if mixed properly

With the "YSZ suspension spraying", the IWS researchers have now developed an alternative process to use a very fine ceramic powder made of yttrium-stabilized zirconium oxide. The grains in this powder have a diameter of only one micrometer or even smaller. Such particularly fine powders would agglomerate very quickly in classical processing methods and cause clogging of the machine hoses.

The engineers therefore mix a suspension with water or alcohol. In this way, the particles can be sprayed. The result is a shielding layer that is about 500 micrometers (thousandths of a millimeter) thick. Since no vacuum is required here, the costs remain rather low. Also, large aircraft components can be coated at relatively high speeds.

A coated aircraft turbine can operate at higher temperatures than an uncoated aggregate. For example, the solution developed by Fraunhofer IWS could raise the operating temperature of a turbine by around 150 degrees at comparatively low cost. As a result, it increases efficiency, extends its service life and reduces cooling costs. The bottom line is lower fuel consumption.

"The environment is also less polluted since the fuel in the improved engines burns more efficiently, which reduces fuel consumption and accordingly fewer pollutants are emitted," estimates Dr. Barbosa. In order to understand another advantage of new engine coatings, it is worth travelling back in time to 2010: When the Icelandic volcano Eyjafjallajökull erupted, it paralyzed air traffic in half of Europe.

In addition to the visibility problems caused by the volcanic ash being hurled up, the airlines were also concerned about potential turbine damage. This ash contains calcium magnesium aluminum silicates (CMAS), similar to the no less harmful fly ash. If this material melts in an unprotected combustion chamber, it can cause considerable damage.

Aircraft sacrificial layer to protect from volcanic eruption

It is precisely against this damage that a high-quality additional layer can help, which does not flake off again immediately. The suspension spraying process developed at the IWS also addresses this problem. "For this application, we work together with the German Aerospace Center and the Technische Universität Dresden," reports Dr. Maria Barbosa.

"We want to jointly develop a 'sacrificial layer' so that ash and sand cannot immediately damage the turbine blade itself. This will enable aero planes to reach their destination safely even after a volcanic eruption".

The IWS process is also attracting great interest in the semiconductor industry. For instance in chip production, the large microelectronics factories use plasma etching chambers. In these chambers, aggressive fluorine compounds repeatedly destroy the chamber walls. With innovative coatings from Dresden, plant constructors plan to better protect the interior of the machines against corrosion in the future.

"We are noticing a large and growing demand from industry for our process – and this from many sectors," emphasizes engineer Dr. Maria Barbosa. "We now envisage opening up further application possibilities. Together with small and medium-sized companies, we are working on an IGF project to make carbide such as tungsten carbide sprayable in a cobalt matrix.

Wissenschaftliche Ansprechpartner:

Dr. Maria Manuel Barbosa
Group Manager Thermal Spraying
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS
Phone +49 351 83391-3429
Winterbergstraße 28, 01277 Dresden 


Markus Forytta | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

More articles from Materials Sciences:

nachricht Bio-circuitry mimics synapses and neurons in a step toward sensory computing
18.10.2019 | DOE/Oak Ridge National Laboratory

nachricht Chains of atoms move at lightning speed inside metals
17.10.2019 | Linköping University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>