Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hannover Messe: Triple treatment for heat-exchangers

11.04.2017

NM - Leibniz Institute for New Materials is introducing new nano-coatings that reduce the effort required for cleaning heat exchangers as well as their corrosion. In these new coatings, the research scientists combine antiadhesive, anticorrosive and, on demand, also antimicrobial properties.

When processing milk and juice, the food industry is using heat exchangers in numerous steps throughout the process. To have no risk to the consumers, heat exchangers have to be free from microbes. Especially in the numerous grooves and recesses of the heat exchanger, persistent biofilms can remain stuck.


New nano-coatings have an anti-adhesive, anti-corrosive and antimicrobial effect.

Source: Ollmann, picture is free

As a result, heat exchangers must be cleaned at regular intervals using aggressive chemicals. These increase the sensitivity for corrosion, especially if mild steel is used as heat exchanger material. Now the INM – Leibniz Institute for New Materials is introducing new nano-coatings that reduce the effort required for cleaning heat exchangers as well as their corrosion. In these new coatings, the research scientists combine antiadhesive, anticorrosive and, on demand, also antimicrobial properties.

The developers will be demonstrating their results and the possibilities they offer at stand B46 in hall 2 at this year's Hannover Messe which takes place from 24th to 28th April.

The developers achieve the anti-adhesive characteristics by introducing hydrophobic compounds that are similar to common Teflon. These inhibit the formation of any undesired biofilm and allow residues to be transported out more easily before they clog up the channels of the heat exchangers. At the same time the researcher use structures that act as diffusion barrier in their coatings.

These inhibit the sensitivity for corrosion prevoked from corrosive substances or aggressive cleaning agents. To prevent microbes, bacteria or fungus from adhering to surfaces, the scientists additionally use colloidal copper in the coating. Due to the oxygen or water that is present in many processes, copper ions are released from the copper colloids. These migrate to the surface and, as a result of their antimicrobial effect, they prevent microbes from proliferation and growth.

“In addition, we can keep the paint chemically stable. Otherwise it would not withstand the aggressive chemicals that are required for cleaning,” explained Carsten Becker-Willinger, Head of Nanomers® at INM.

Adding that the paint could also be adapted for special mechanical loads, he explained that this was important for paint used in heat exchangers, too. Due to mechanical vibrations, the individual plates of the heat exchangers could be subjected to a certain amount of abrasion at points of contact.

Principally, the paint developed could also be used in other contexts, Becker-Willinger said, including the large sector of air conditioning with heat exchangers. Furthermore, the paint could be used for equipment in water purification plants, for example.

The paint can be applied using standard methods such as spraying or immersion and subsequent hardening. It can be used on stainless steel, steel, titanium or aluminum. By selectively adapting individual constituents, the developers are able to respond to the particular, special requirements of interested users.

Your expert at INM
Dr.-Ing. Carsten Becker-Willinger
INM – Leibniz Institute for New Materials
Head Nanomers®
Phone: +49681-9300-196
nanomere@leibniz-inm.de

INM – Leibniz Institute for New Materials, situated in Saarbrücken, is an internationally leading centre for materials research. INM conducts research and development to create new materials – for today, tomorrow and beyond. Research at INM is performed in three fields: Nanocomposite Technology, Interface Materials, and Bio Interfaces. INM is an institute of the Leibniz Association and has about 240 employees.

Weitere Informationen:

http://www.leibniz-inm.de/en

Dr. Carola Jung | idw - Informationsdienst Wissenschaft

Further reports about: COPPER INM Nano-coating Titanium antimicrobial heat exchangers microbes

More articles from Materials Sciences:

nachricht Large-scale window material developed for PM2.5 capture and light tuning
18.02.2019 | University of Science and Technology of China

nachricht Engineered metasurfaces reflect waves in unusual directions
18.02.2019 | Aalto University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

New therapeutic approach to combat African sleeping sickness

20.02.2019 | Life Sciences

Powering a pacemaker with a patient's heartbeat

20.02.2019 | Medical Engineering

The holy grail of nanowire production

20.02.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>