Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Group of Brazilian researchers achieves almost instant magnetization of matter by light


In an experiment described in Physical Review Letters, a single photon aligned the spins of 6,000 electrons in only 50 picoseconds. The result offers prospects for technological applications in the electronic component industry

The production of devices to store or transmit information is one of the most frequent technological applications of magnetism. An experimental and theoretical study conducted at the University of São Paulo's Physics Institute (IF-USP) in Brazil has discovered an ultrafast way of magnetizing matter with minimal energy consumption.

Alignment of europium atom spins by light.

Credit: André Bohomoletz Henriques

Using a technique called magnetization by light, the researchers magnetized a sample of europium selenide (EuSe) in 50 picoseconds with a 50-watt bulb located a few centimeters away. A picosecond is one trillionth of a second.

An article describing the experiment titled "Ultrafast light switching of ferromagnetism in EuSe" was recently published in Physical Review Letters.

The experiment was conducted by André Bohomoletz Henriques, a full professor at IF-USP, and collaborators with support from the São Paulo Research Foundation - FAPESP.

"Our aim was to find new mechanisms to change the magnetism of materials in an ultrashort time scale using only light. The novelty of our research is that it makes very strong magnetization possible with very small amounts of light," Henriques said.

The process was experimentally derived at the University of São Paulo's Magneto-Optics Laboratory, but interpreting the phenomenon required substantial theoretical work, involving procedures such as self-consistent quantum mechanical calculations and Monte Carlo simulations, on the part of the group led by Henriques.

The magnetization of a material is associated with the spatial ordering of the spins of its constituent particles. In an unmagnetized material, the spins of its atoms (resulting from the spins of its electrons) are disordered. Because vector magnitude is involved, the spin of each atom points in an arbitrary direction. In certain situations, these spins can be ordered by light, which, as a result, can completely magnetize an initially disordered material. The image above illustrates the process of magnetization by light.

The material chosen for the experiment was the semiconductor europium selenide (EuSe), in which each photon ordered the spins of 6,000 electrons.

"This happens because when a photon interacts with an electron, it changes a state that is strongly located in the atom to a state that extends to many atoms," Henriques explained. "The result is that in an extraordinarily short time, about 50 picoseconds, all the atoms within reach of the electron's wave function switch their spins to a common direction, creating a super-gigantic magnetic moment approaching 6,000 Bohr magnetons. That is equivalent to the magnetic moment of 6,000 electrons with spins all pointing in the same direction. The result, considered unexpected and spectacular by peer reviewers for Physical Review Letters, was that with a single photon, we were able to align the spins of 6,000 electrons."

Spin is popularly understood as the rotation of a particle around an axis, but this conception does not correspond to reality and only serves as a representation of a particle associated with an electric current equivalent to a magnetic moment.

Particles not only have inertial mass and electric charge but also a third physical property called spin. This property, characterized as a vector (i.e. a physical quantity with magnitude and direction), describes the magnetic moment of the particle. Like a compass needle, which is oriented in a North-South direction by the pull of Earth's magnetic field because it has a magnetic moment, a particle's spin also tends to point in the direction of the magnetic field acting on it.

"To magnetize europium selenide, the photon must have enough energy to transfer an electron from an orbit very close to the atomic nucleus to a distant orbit in the conduction band. As a result of this transfer, the electron interacts magnetically with thousands of nearby atoms. The interaction between the electron's magnetic moment and the magnetic moments of the nearby atoms aligns all their spins," said the FAPESP-supported researcher.

Anti-ferromagnetic interaction

Europium selenide was chosen due to its high magnetic susceptibility, which results in the strong tendency of atom spins to align under the effect of a very small magnetic field.

"In addition to the magnetic interaction between the electron and the europium atoms, there is also magnetic interaction among the europium atoms themselves. Interaction between first neighbors is ferromagnetic; in other words, it favors alignment in the same direction. But interaction between second neighbors is anti-ferromagnetic and favors alignment in opposite directions," Henriques said.

"These two interactions almost cancel each other out. Actually, the anti-ferromagnetic interaction just about prevails. For this reason, under usual conditions, the material is found in the anti-ferromagnetic state, without magnetism. However, any minor disturbance, such as the presence of an electron, can upset this delicate balance of interactions and favor the ferromagnetic state, i.e. the alignment of all spins in the crystal in the same direction, magnetizing the material almost instantly."

There are different forms of magnetic interaction. The best-known form is dipolar interaction, which characterizes the attraction between two magnets, but there is also exchange interaction, which is far stronger and influences the magnetism of a compass needle or refrigerator magnet.

Exchange interaction is electrostatic in origin and constitutes a quantum phenomenon derived from the Pauli exclusion principle, which has no analogue in classical physics. This process makes ultrafast magnetization by light possible with minimal energy consumption.

Although they conducted this study strictly as basic research, Henriques and his team are aware of the potential technological applications in the context of the swiftly advancing electronics industry. According to an editorial published in March 2018 in the journal Nature Physics, the manipulation of magnetism in anti-ferromagnetic materials such as europium selenide is an emerging field of research with promising potential for application in electronic devices.


About São Paulo Research Foundation (FAPESP)

The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. For more information:

Media Contact

Joao Carlos da Silva


Joao Carlos da Silva | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht A materials scientist’s dream come true
21.08.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Novel sensors could enable smarter textiles
17.08.2018 | University of Delaware

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>



Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

Latest News

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Protein interaction helps Yersinia cause disease

21.08.2018 | Life Sciences

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

Science & Research
Overview of more VideoLinks >>>