Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ground-breaking discoveries could create superior alloys with many applications

19.06.2018

Many current and future technologies require alloys that can withstand high temperatures without corroding. Now, researchers at Chalmers University of Technology, Sweden, have hailed a major breakthrough in understanding how alloys behave at high temperatures, pointing the way to significant improvements in many technologies. The results are published in the highly ranked journal Nature Materials.

Developing alloys that can withstand high temperatures without corroding is a key challenge for many fields, such as renewable and sustainable energy technologies like concentrated solar power and solid oxide fuel cells, as well as aviation, materials processing and petrochemistry.


A sample holder inside a focus ion beam (FIB) milling microscope used to create thin foils for transmission electron microscopy (TEM) studies.

Credit: Johan Bodell/Chalmers University of Technology, Sweden (1)

At high temperatures, alloys can react violently with their environment, quickly causing the materials to fail by corrosion. To protect against this, all high temperature alloys are designed to form a protective oxide scale, usually consisting of aluminium oxide or chromium oxide.

This oxide scale plays a decisive role in preventing the metals from corroding. Therefore, research on high temperature corrosion is very focused on these oxide scales – how they are formed, how they perform at high heat, and how they sometimes fail.

The article in Nature Materials answers two classical issues in the area. One applies to the very small additives of so-called ‘reactive elements’ – often yttrium and zirconium – found in all high-temperature alloys. The second issue is about the role of water vapour.

“Adding reactive elements to alloys results in a huge improvement in performance – but no one has been able to provide robust experimental proof why,” says Nooshin Mortazavi, materials researcher at Chalmers’ Department of Physics, and first author of the study. “Likewise, the role of water, which is always present in high-temperature environments, in the form of steam, has been little understood. Our paper will help solve these enigmas”.

In this paper, the Chalmers researchers show how these two elements are linked. They demonstrate how the reactive elements in the alloy promote the growth of an aluminium oxide scale. The presence of these reactive element particles causes the oxide scale to grow inward, rather than outward, thereby facilitating the transport of water from the environment, towards the alloy substrate. Reactive elements and water combine to create a fast-growing, nanocrystalline, oxide scale.

“This paper challenges several accepted ‘truths’ in the science of high temperature corrosion and opens up exciting new avenues of research and alloy development,” says Lars Gunnar Johansson, Professor of Inorganic Chemistry at Chalmers, Director of the Competence Centre for High Temperature Corrosion (HTC) and co-author of the paper.

“Everyone in the industry has been waiting for this discovery. This is a paradigm shift in the field of high-temperature oxidation,” says Nooshin Mortazavi. “We are now establishing new principles for understanding the degradation mechanisms in this class of materials at very high temperatures.”

Further to their discoveries, the Chalmers researchers suggest a practical method for creating more resistant alloys. They demonstrate that there exists a critical size for the reactive element particles. Above a certain size, reactive element particles cause cracks in the oxide scale, that provide an easy route for corrosive gases to react with the alloy substrate, causing rapid corrosion. This means that a better, more protective oxide scale can be achieved by controlling the size distribution of the reactive element particles in the alloy.

This ground-breaking research from Chalmers University of Technology points the way to stronger, safer, more resistant alloys in the future.

More about: Potential consequences of the research breakthrough

High temperature alloys are used in a variety of areas, and are essential to many technologies which underpin our civilisation. They are crucial for both new and traditional renewable energy technologies, such as "green" electricity from biomass, biomass gasification, bio-energy with carbon capture and storage (BECCS), concentrated solar energy, and solid oxide fuel cells.
They are also crucial in many other important technology areas such as jet engines, petrochemistry and materials processing.

All these industries and technologies are entirely dependent on materials that can withstand high temperatures – 600 ° C and beyond – without failing due to corrosion. There is a constant demand for materials with improved heat resistance, both for developing new high temperature technologies, and for enhancing the process efficiency of existing ones.

For example, if the turbine blades in an aircraft's jet engines could withstand higher temperatures, the engine could operate more efficiently, resulting in fuel-savings for the aviation industry. Or, if you can produce steam pipes with better high-temperature capability, biomass-fired power plants could generate more power per kilogram of fuel.

Corrosion is one of the key obstacles to material development within these areas. The Chalmers researchers' article provides new tools for researchers and industry to develop alloys that withstand higher temperatures without quickly corroding.

More About: The Research

The Chalmers researchers’ explanation of how oxide scale growth occurs – which has been developed using several complementary methods for experimentation and quantum chemistry modelling – is completely new to both the research community, and the industry in the field of high-temperature materials.

The research was carried out by the High Temperature Corrosion Center (HTC) (www.htc.chalmers.se) in a collaboration between the Departments of Chemistry and Physics at Chalmers, together with the world leading materials manufacturer Kanthal, part of the Sandvik group. HTC is jointly funded by the Swedish Energy Agency, 21 member-companies and Chalmers.

The paper was published in the highly prestigious journal Nature Materials.
Full bibliographic information

Interplay of water and reactive elements in oxidation of alumina-forming alloys N. Mortazavi, C. Geers, M. Esmaily, V. Babic, M. Sattari, K. Lindgren, P. Malmberg, B. Jönsson, M. Halvarsson, J. E. Svensson, I. Panas & L. G. Johansson Nature Materials (2018) | DOI 10.1038/s41563-018-0105-6

For further information, please contact:
Joshua Worth
+46709450113
joshua.worth@chalmers.se

www.chalmers.se

Joshua Worth | AlphaGalileo
Further information:
https://www.alphagalileo.org/en-gb/Item-Display/ItemId/165110

More articles from Materials Sciences:

nachricht Research finds new molecular structures in boron-based nanoclusters
13.07.2018 | Brown University

nachricht 3D-Printing: Support structures to prevent vibrations in post-processing of thin-walled parts
12.07.2018 | Fraunhofer-Institut für Produktionstechnologie IPT

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>