Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Grinding the hardest to reach places within a component

29.01.2016

It’s long established that flow grinding can be utilized to grind and polish the inner surfaces of components such as corners and drill holes: a fluid containing grinding particles is pumped through the component. However, flow dead zones can arise when a component has a complex form. In these cases, the flow stagnates at a specific spot, which results in the grinding process being ineffective in that area. To address this, a new magnetorheological flow grinding procedure for aluminum based components has been developed by scientists at the Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, in a joint project.

This process allows difficult to reach dead volume areas deep inside components to be accurately ground and polished.


Flow channel with magnetic coils (left). Macroscopic simulation of the magnetic fields within the channel (top right) and a microscopic simulation of the magnetic particles (bottom right).

Fraunhofer IWM

Components which have complex shapes often need their inner surfaces to be ground, deburred or rounded so that those surfaces function properly. This is of particular relevance for metallic 3D-printing as well as for medical implants, injection nozzles in automobiles, cooling channels in turbine blades or in any tool in which a recast layer needs to be removed.

Manufacturers enable flow grinding or hydro-erosive rounding by pumping a fluid containing abrasives through the component. These abrasive particles grind along the inner surface of the component, achieving the desired smoothness.

Using magnetorheological abrasive particles to grind in flow dead zones

The results of a conventional flow grinding procedure are largely dependent upon flow dynamics: based on a component’s individual form the abrasive grains in the fluid will have stronger or weaker interaction with different sections, so some parts of the inner surface area will not be properly smoothed. In these dead volumes the flow can almost completely stagnate.

»In such cases, the abrasive grains are completely ineffective, regardless of back and forth pumping«, explains Dr. Claas Bierwisch, scientist in the Powder Technology, Fluid Dynamics group at the Fraunhofer IWM in Freiburg. Using the newly developed process, the abrasive particles are moved by magnets strategically placed on the component. »The magnetorheological abrasive grains are pulled precisely to the area within the component that needs to be addressed – flow force and magnetic strength work together so that the abrasive particles can work within the farthest reaches of the component«, continues Bierwisch.

Simulating magnetorheological flow grinding

It is within this context that the Fraunhofer IWM focuses upon the geometry of a particular component as well as aspects of the flow grinding process which clients require to be customized. The Powder Technology, Fluid Dynamics group is a worldwide leader in predicting the behavior of abrasive grains and their efficacy on component surfaces, through the practical application of mesh-free particle simulations.

»We simulate flow within a system, how long a process will take until completion and recommend the ideal fluid/particle combination and processing methods to component manufacturers so that the desired results can be achieved«, states Bierwisch. »We answer questions such as ‘Where are the dead volumes on a specific component’, ‘How should the magnetic field be designed’ or ‘Will the desired process be achieved by aligning the magnetic abrasive particles or does their movement also need to be steered?’« Answering these types of questions via experiment and trial and error is unthinkable – there are simply too many test variants.

The Fraunhofer IWM simulation team is a core member of a joint project, funded by BMBF (the German Federal Ministry of Education and Research BMBF), with other Fraunhofer Institutes as well as industry partners which ran successful laboratory scale tests on magnetorheological flow grinding in aluminum components. The Fraunhofer Institute for Ceramic Technologies and Systems IKTS tested the magnetic properties within the combination of fluid and particles while the Fraunhofer Institute for Production Systems and Design Technology IPK developed the corresponding systems technology.

As aluminum components are not ferromagnetic, they are well suited to magnetorheological flow grinding. This process is much more complicated when dealing with components composed of magnetizable material, as attaching a magnetic coil to these would produce a strong magnetic field which would need to be factored in to any calculations. Scientists at the Fraunhofer IWM plan to address this in future projects so that magnetorheological flow grinding can also be applied to magnetizable components.

Weitere Informationen:

http://www.en.iwm.fraunhofer.de/press-events-publications/details/id/1121/ press release online with further links
http://www.en.iwm.fraunhofer.de/business-units/manufacturing-processes/powder-te... Particle-based Process Modeling
http://www.simpartix.com/ Modeling the mechanics of materials and fluids using mesh-free methods

Thomas Götz | Fraunhofer-Institut für Werkstoffmechanik IWM

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bifacial Stem Cells Produce Wood and Bast

Heidelberg researchers study one of the most important growth processes on Earth

So-called bifacial stem cells are responsible for one of the most critical growth processes on Earth – the formation of wood.

Im Focus: Energizing the immune system to eat cancer

Abramson Cancer Center study identifies method of priming macrophages to boost anti-tumor response

Immune cells called macrophages are supposed to serve and protect, but cancer has found ways to put them to sleep. Now researchers at the Abramson Cancer...

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

How our cellular antennas are formed

22.01.2019 | Life Sciences

Proposed engineering method could help make buildings and bridges safer

22.01.2019 | Architecture and Construction

Bifacial Stem Cells Produce Wood and Bast

22.01.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>