Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Green' electronic materials produced with synthetic biology

18.07.2016

Scientists at UMass Amherst report in the current issue of Small that they have genetically designed a new strain of bacteria that spins out extremely thin and highly conductive wires made up solely of non-toxic, natural amino acids

Scientists at the University of Massachusetts Amherst report in the current issue of Small that they have genetically designed a new strain of bacteria that spins out extremely thin and highly conductive wires made up of solely of non-toxic, natural amino acids.


Synthetic biowire are making an electrical connection between two electrodes. Researchers led by microbiologist Derek Lovely at UMass Amherst say the wires, which rival the thinnest wires known to man, are produced from renewable, inexpensive feedstocks and avoid the harsh chemical processes typically used to produce nanoelectronic materials.

Credit: UMass Amherst

Researchers led by microbiologist Derek Lovely say the wires, which rival the thinnest wires known to man, are produced from renewable, inexpensive feedstocks and avoid the harsh chemical processes typically used to produce nanoelectronic materials.

Lovley says, "New sources of electronic materials are needed to meet the increasing demand for making smaller, more powerful electronic devices in a sustainable way." The ability to mass-produce such thin conductive wires with this sustainable technology has many potential applications in electronic devices, functioning not only as wires, but also transistors and capacitors. Proposed applications include biocompatible sensors, computing devices, and as components of solar panels.

This advance began a decade ago, when Lovley and colleagues discovered that Geobacter, a common soil microorganism, could produce "microbial nanowires," electrically conductive protein filaments that help the microbe grow on the iron minerals abundant in soil. These microbial nanowires were conductive enough to meet the bacterium's needs, but their conductivity was well below the conductivities of organic wires that chemists could synthesize.

"As we learned more about how the microbial nanowires worked we realized that it might be possible to improve on Nature's design," says Lovley. "We knew that one class of amino acids was important for the conductivity, so we rearranged these amino acids to produce a synthetic nanowire that we thought might be more conductive."

The trick they discovered to accomplish this was to introduce tryptophan, an amino acid not present in the natural nanowires. Tryptophan is a common aromatic amino acid notorious for causing drowsiness after eating Thanksgiving turkey. However, it is also highly effective at the nanoscale in transporting electrons.

"We designed a synthetic nanowire in which a tryptophan was inserted where nature had used a phenylalanine and put in another tryptophan for one of the tyrosines. We hoped to get lucky and that Geobacter might still form nanowires from this synthetic peptide and maybe double the nanowire conductivity," says Lovley.

The results greatly exceeded the scientists' expectations. They genetically engineered a strain of Geobacter and manufactured large quantities of the synthetic nanowires 2000 times more conductive than the natural biological product. An added bonus is that the synthetic nanowires, which Lovley refers to as "biowire," had a diameter only half that of the natural product.

"We were blown away by this result," says Lovley. The conductivity of biowire exceeds that of many types of chemically produced organic nanowires with similar diameters. The extremely thin diameter of 1.5 nanometers (over 60,000 times thinner than a human hair) means that thousands of the wires can easily be packed into a very small space.

The added benefit is that making biowire does not require any of the dangerous chemicals that are needed for synthesis of other nanowires. Also, biowire contains no toxic components. "Geobacter can be grown on cheap renewable organic feedstocks so it is a very 'green' process," he notes. And, although the biowire is made out of protein, it is extremely durable. In fact, Lovley's lab had to work for months to establish a method to break it down.

"It's quite an unusual protein," Lovley says. "This may be just the beginning" he adds. Researchers in his lab recently produced more than 20 other Geobacter strains, each producing a distinct biowire variant with new amino acid combinations. He notes, "I am hoping that our initial success will attract more funding to accelerate the discovery process. We are hoping that we can modify biowire in other ways to expand its potential applications."

###

This research was supported by the Office of Naval Research, the National Science Foundation's Nanoscale Science and Engineering Center and the UMass Amherst Center for Hierarchical Manufacturing.

Media Contact

Janet Lathrop
jlathrop@umass.edu
413-545-0444

 @umassscience

http://www.umass.edu 

Janet Lathrop | EurekAlert!

Further reports about: acid amino acid electronic materials nanowire nanowires synthetic biology

More articles from Materials Sciences:

nachricht 3D inks that can be erased selectively
16.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Designing Nanocrystals for more efficient Optoelectronics
16.08.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>