Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant Optical Gain in a Rare-Earth-Ion-Doped Microstructure

09.01.2012
Prof. Markus Pollnau and co-workers at the MESA+ Institute for Nanotechnology at the University of Twente have developed a rare-earth-ion-doped optical amplifier with performance comparable to semiconductor amplifiers.
Signal amplification
Amplification of optical signals is critical in photonics applications. Semiconductor optical waveguide amplifiers have high gain per unit length (~1000 dB/cm), but suffer from spatial and temporal gain pattering effects.

In comparison, fiber amplifiers doped with trivalent rare-earth ions like Er3+ combine good overall gain with low noise and negligible non-linearities. However, this comes at the cost of having to use several meters of fiber length, making them unsuitable for on-chip applications.

By engineering the host material, dopant concentration, and geometry the MESA+ scientists were able to increase the modal gain per unit length of rare-earth-ion-doped waveguide amplifiers to ~1000 dB/cm.

As good as semiconductor amplifiers
“Our highest measured gain of 935 dB/cm is two orders of magnitude higher than previously demonstrated in any rare-earth-ion-doped amplifier and similar to the best results reported for semiconductor amplifiers,” says Dimitri Geskus, lead author on the paper.

The approach uses the family of monoclinic potassium double tungstates KY(WO4)2, KGd(WO4)2, and KLu(WO4)2. Yb3+ ions doped into these materials possess some of the highest transition cross-sections observed in dielectric materials.

Besides their applicability as on-chip amplifiers for high-bit-rate data transmission at signal wavelengths around 1 ìm, these new rare-earth-ion-doped amplifiers may be used to provide optical gain in nanophotonic devices, such as nanoamplifiers and nanolasers, and may enable lossless propagation in plasmonic nanostructures.

The research is reported in the first issue of Advanced Optical Materials, a new section in Advanced Materials (2010 IF: 10.880) dedicated to exploring light-matter interactions.

For more information on Advanced Optical Materials, visit www.advopticalmat.de.

The article is available at http://doi.wiley.com/10.1002/adma.201101781.

If you need further information or are interested in the pdf of the article please contact me at cteutsch@wiley-vch.de

Carmen Teutsch | Wiley-VCH
Further information:
http://www.wiley-vch.de

More articles from Materials Sciences:

nachricht Molecular switch detects metals in the environment
15.08.2018 | Université de Genève

nachricht Breakthrough in nanoresearch - Quantum chains in graphene nanoribbons
09.08.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>