Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geosciences Professor Establishes Structure Of A New Superhard Form Of Carbon

28.06.2012
An international team led by Artem R. Oganov, PhD, a professor of theoretical crystallography in the Department of Geosciences at Stony Brook University, has established the structure of a new form of carbon. The results of their work, “Understanding the Nature of Superhard Graphite,” were published June 26 in Scientific Reports, a new journal of the Nature Publishing Group.

Dr. Oganov and his team used a novel computational method to demonstrate that the properties of what had previously been thought to be only a hypothetical structure of a superhard form of carbon called “M-carbon” – constructed by Oganov in 2006 – matched perfectly the experimental data on “superhard graphite.”

“Most of the known forms of carbon have a colorful story of their discovery and a multitude of real or potential revolutionary applications,” said Oganov. “Think of diamond, a record-breaking material in more than one way. Think of graphene, destined to become the material of electronics of the future. Or of fullerenes, the discovery of which has started the field of nanoscience.”

The story of yet another form of carbon started in 1963, when Aust and Drickamer compressed graphite at room temperature. High-temperature compression of graphite is known to produce diamond, but at room temperature an unknown form of carbon was produced. This new form, like diamond, was transparent and superhard - but its other properties were inconsistent with diamond or other known forms of carbon.

“The experiment itself is simple and striking: you compress black ultrasoft graphite, and then it suddenly turns into a colorless, transparent, superhard and mysterious new form of carbon – ‘superhard graphite,’” said Oganov. “The experiment was repeated several times since, and the result was the same, but no convincing structural model was produced, due to the low resolution of experimental data.”

Using his breakthrough crystal structure prediction methodology, Oganov in 2006 constructed a new low-energy superhard structure of “M-carbon.” That work resulted in a stream of scientific papers that within two years proposed different “alphabetic” structures, such as F-, O-, P-, R-, S-, T-, W-, X-, Y-, Z-carbons. “The irony was that most of these also had properties compatible with experimental observations on ‘superhard graphite.’ To discriminate between these models, higher-resolution experimental data and additional theoretical insight are required,” he said.

According to Oganov, the reason why diamond is not formed on cold compression of graphite is that the reconstruction needed to transform graphite into diamond is too large and is associated with too great an energy barrier, which can be overcome only at high temperatures, when atoms can jump far. At low temperatures, graphite chooses instead a transformation associated with the lowest activation barrier.

One could establish the structure of ‘superhard graphite’ by finding which structure has the lowest barrier of formation from graphite. To do that, Oganov, his postdoctoral associate Salah Eddine Boulfelfel, and their German colleague, Professor Stefano Leoni, of Dresden University of Technology, used a powerful simulation approach, recently adapted to solid materials, known as transition path sampling. These simulations required some of the world's most powerful supercomputers, and finally proved that "superhard graphite" is indeed identical to M-carbon, earlier predicted by Oganov.

“These calculations are technically extremely challenging, and it took us many months to perform and analyze them. Searching for the truth, you have to be prepared for any outcome, and we were ready to accept if another of the many proposed structures won the contest. But we got lucky, and our own proposal – M-carbon – won,” said Oganov.

Another result of this study is a set of detailed mechanisms of formation of several potential carbon allotropes. These could be used to engineer ways of their synthesis for potential technological applications.

“We don't know yet which applications M-carbon will find, but most forms of carbon did manage to find revolutionary applications, and this amazing material might do so as well,” said Oganov.

Please click here (http://www.youtube.com/watch?v=bm0ZmXpHCk0) for a short video by Salah Eddine Boulfelfel on the “New Carbon Allotrope at High Pressure” from the Artem Oganov Lecture Series.

| Newswise Science News
Further information:
http://www.stonybrook.edu

More articles from Materials Sciences:

nachricht From foam to bone: Plant cellulose can pave the way for healthy bone implants
19.03.2019 | University of British Columbia

nachricht Additive printing processes for flexible touchscreens: increased materials and cost efficiency
19.03.2019 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>