Georgia Tech Awarded New Center to Study Potential Silicon Successor

The Laboratory will focus its efforts on the development of new materials to serve as the successors to silicon in the semiconductor industry. Specifically, the development of graphene – which holds tremendous promise as an electronic material – will be the initial core of research and development at the Center.

NSF funding will be $8.1 million for six years of research and development. The MRSEC office suite will be housed in the Georgia Tech’s new Marcus Nanotechnology Research Center Building.

“This is an exciting time for graphene research,” said Dennis Hess, director of the Georgia Tech MRSEC. “Our studies may allow the manufacture of microelectronic devices and integrated circuits based on graphene. The Georgia Tech team, in conjunction with external partners, has already pioneered the use of epitaxial graphene to achieve such goals. Georgia Tech Physics Professors Walt de Heer, Phil First and Ed Conrad are worldwide leaders in the growth and characterization of epitaxial graphene. We look forward to additional innovative discoveries from our Center over the next few years.”

The Laboratory will be a cross-disciplinary effort utilizing the talent and resources of Georgia Tech and four additional institutions: University of California Berkeley, University of California Riverside, Alabama A & M and the University of Michigan. Georgia Tech will initially have 13 faculty members involved in the Laboratory’s efforts, with five additional members representing the partner schools. Collaborations are already in place with several companies and national laboratories within the U.S. and abroad.

Graphene, a sheet of carbon only one-atom thick, holds the potential to become the core material for computer processors in electronics, which continue to become smaller in size. Silicon, comparatively, has fundamental limitations that inhibit operation in ever-shrinking devices used in microelectronics, optics and sensors.

Georgia Tech will develop the fundamental science and technology to maximize graphene’s potential as a component in future electronics technologies. In addition, the Center will provide the core curriculum, train a diverse workforce and develop the future academic and industrial leaders needed for this new direction in the semiconductor industry.

An industrial advisory board is being assembled for the Center, which will include representatives from leading electronics companies.

“This new MRSEC complements Georgia Tech's multiple programs and investments in nanotechnology extremely well,” said Professor Mark Allen, senior vice provost for Research and Innovation. “Much of the work will take place in our Nanotechnology Research Center, a new facility dedicated to research into both inorganic and organic nanoscience and nanotechnology. We look forward to enabling the next generation of graphene electronics through the efforts of the researchers in this new MRSEC.”

Media Contact

Don Fernandez Newswise Science News

More Information:

http://www.gatech.edu

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors