Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fraunhofer WKI develops sustainable sandwich elements made from wood foam and textile-reinforced


In a joint project with the Technische Universität Braunschweig, researchers from the Fraunhofer WKI have developed an innovative building element for the construction industry: a sandwich element with a wood-foam core and a thin cover layer of textile-reinforced concrete. It can be used, for example, as a lightweight curtain-wall element or in interior fittings. The high-performance wood foam requires no artificial binding agents and can be produced from regionally available wood residues. Through the utilization of wood foam instead of conventional foam based on petrochemicals, the proportion of particularly sustainable construction materials in buildings can be increased.

Wood-fiber materials are already being frequently used in the construction industry. The products used until now, such as fiberboard or oriented strand board, usually contain petrochemical binders. In an earlier research project, the scientists at the Fraunhofer WKI had already developed a wood foam which does not require artificial binders.

Sandwich element made from wood foam with textile-reinforced concrete as cover layer.

Fraunhofer WKI | Manuela Lingnau

Now, in cooperation with the Institute of Joining and Welding Technology at the TU Braunschweig, they have closely examined the potential of wood foam for practical applications in the construction industry. Together, they have developed a sandwich element comprised of a wood-foam core with a thin layer of textile-reinforced concrete applied to both sides.

Sandwich elements, as a material combination with a relatively thick and rigid core and a cover layer which is as thin as possible, have many advantages.

They result in stiff and load-bearing components which are nevertheless lightweight. As sandwich elements also provide good thermal and acoustic insulation, they are already widely used in building construction.

In this project, the researchers at the Fraunhofer WKI set themselves the goal of making sandwich elements more sustainable by utilizing renewable raw materials and avoiding the use of binders. They succeeded.

“Through the utilization of our wood foam with a thin textile-reinforced concrete cover layer, the proportion of particularly sustainable construction materials in buildings can be increased,” summarizes Project Manager Dr. Frauke Bunzel.

The wood foam is comprised exclusively of wood fibers. The relatively pressure-stable structural fixing of the wood fibers is achieved through a special manufacturing process with the aid of the wood’s own bonding forces.

In addition to all tree species or annual plants containing lignocellulose, waste wood can also be used as a raw material source. “In this way, a versatile product is created which is not only sustainable but also just as efficient as comparable wood-fiber materials with petrochemical binders,” explains Dr. Bunzel.

In order to be used in construction, wood foam as a sandwich-core material must fulfill minimum requirements in terms of strength and thermal conductivity. The researchers have therefore produced and comprehensively examined different species of wood with differing, practicable densities in order to determine the best possible combinations. “We have also further developed the process technology for producing the wood foam. We have made particular progress in the type of foaming and efficient drying,” reports Dr. Bunzel.

Within the framework of the project, the researchers at the Institute of Joining and Welding Technology at the TU Braunschweig determined that differing techniques can be applied when joining the wood-foam core to the textile-reinforced concrete cover layers.

Construction adhesives from wood technology adhere well to the cured concrete surface layers and can therefore be used both indoors and outdoors, depending on the requirements. Alternatively, the possibility exists to pour the liquid-phase concrete directly onto the open-pored wood-foam core.

With this joining process, the sandwich elements are also suitable for indoor and outdoor use. Through direct pouring, adhesives become superfluous. This makes the sandwich elements easier to recycle at a later date.

“Through testing, we have shown that the sandwich elements which we produce result in components with sufficient load-bearing capacity and thermal and acoustic effectiveness,” concludes Dr. Bunzel.

The wood-foam core offers a sustainable alternative to the petrochemical-based core materials previously used in construction. The sandwich elements can be utilized in lightweight curtain-wall elements as well as for interior fittings.

The project was funded by the “Zukunft Bau” research initiative of the Federal Ministry for the Environment, Nature Conversation and Nuclear Safety.

Sustainability through the utilization of renewable raw materials has formed the focus at the Fraunhofer WKI for more than 70 years. The institute, with locations in Braunschweig, Hanover and Wolfsburg, specializes in process engineering, natural-fiber composites, wood and emission protection, quality assurance of wood products, material and product testing, recycling procedures and the utilization of organic building materials and wood in construction. Virtually all the procedures and materials resulting from the research activities are applied industrially.


Thomas Eck | Fraunhofer-Gesellschaft

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

Latest News

Flying Laptop satellite mission extended by two years - Successfully in orbit since July 14, 2017

16.07.2019 | Physics and Astronomy

New safer, inexpensive way to propel small satellites

16.07.2019 | Power and Electrical Engineering

UCI electrical engineering team develops 'beyond 5G' wireless transceiver

16.07.2019 | Information Technology

Science & Research
Overview of more VideoLinks >>>