Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer Speeds Up Thin Film Development And Industrialization With Deposition System From Impact Coatings

29.05.2012
Fraunhofer Institute for Surface Engineering and Thin Films IST has developed a strain gauge sensor directly coated on the work piece surface with high strain sensitivity and temperature compensation. The development showed that by using IC300 from Impact Coatings, more than 10 times higher output was achieved, compared to a traditional box coater.

Impact Coatings has delivered an industrial a high-rate sputtering system, InlineCoater 300, to Fraunhofer. Fraunhofer is using the high throughput to increase the speed of development.

The IC300 offers the thin film scientists the possibility to test more than 100 different parameter setups in a day, which gives a substantial reduction of the development time. Using the same system for development as for future industrial production also shortens the time to market.

Finally, Fraunhofer has shown that the InlineCoater-system gives more than 10 times higher production output compared to a traditional boxcoater PVD-system. The higher productivity reduces the manufacturing cost and increases profitability.

The strain gauge sensor, based on a metal alloyed diamond-like carbon coating, is the first product Fraunhofer has developed using the IC300 deposition system.

Fraunhofer is now looking for industrial companies interested in producing this product. Impact Coatings is involved as a partner to Fraunhofer and deliveres the generic deposition system while Fraunhofer delivers the deposition process and know-how.

“The cooperation and the deposition systems from Impact Coatings increases our development speed and also enables us to do rapid R&D, industrialization and production using the same deposition system. Once we have developed a coating, the same system and process can easily be transferred to industry” says Dr Ralf Bandorf, Group Manager Fraunhofer IST.

“Fraunhofer is a high knowledge institute and we are happy to work together with them to develop new coatings and application areas. Impact Coatings acts as a partner to deliver the deposition system and Fraunhofer develops the coating; this piezoresistive coating is a good example of this cooperation” says Dr Henrik Ljungcrantz, CEO of Impact Coatings.

Impact Coatings AB develops and commercializes innovative technology for PVD surface treatment. PVD is a method to vacuum coat thin films of metals and ceramics.

The company’s main product is the deposition material Silver MaxPhase™, which can replace gold on electrical contacts. For efficient industrial coating of the material, the company has developed the deposition systems ReelCoater™, InlineCoater™ and PlastiCoater™. These systems are also used for deposition of other materials, e.g. in decorative and optical applications.

The company was founded in 1997. Following a period of development and establishing products and services, an international exploration has now stared. Target customers are primarily component manufacturers within the electronics and automotive industries.

Impact Coatings’ share is traded at Nasdaq OMX Stockholm First North since 2004. Remium Nordic AB is the company’s Certified Adviser.

| www.cisionwire.com
Further information:
http://www.ist.fraunhofer.de

More articles from Materials Sciences:

nachricht From foam to bone: Plant cellulose can pave the way for healthy bone implants
19.03.2019 | University of British Columbia

nachricht Additive printing processes for flexible touchscreens: increased materials and cost efficiency
19.03.2019 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>