Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flying: Efficiency thanks to Lightweight Air Nozzles

23.10.2017

The Federal Cluster of Excellence MERGE at Chemnitz University of Technology and the Fraunhofer ENAS join forces in order to optimise actuator systems for active flow control in aeroplanes and cars

Active flow control has nothing to do with flowing rivers and the dead wake is actually air, and not really dead at all. Basically speaking: “We investigate ways of influencing aerodynamic flows of aeroplanes, cars or wind turbines”, explains Dipl.-Ing. Martin Schüller, research fellow at the Fraunhofer Institute for Electronic Nano Systems in Chemnitz.


Integrated actuators for active flow control in the demonstrative rotor blade.

Vivek Bakul Maru

“To this end, we use actuators. It helps to imagine small loudspeakers pumping air with a very high velocity.” These so-called actuators can actively control the aerodynamic flow through targeted air blasts. The Federal Cluster of Excellence MERGE at Chemnitz University is contributing significantly to this research project.

Optimising their application and design for varying uses is the subject of Schüller’s PhD thesis and of his daily work along with his colleagues Mathias Lipowski, Perez Weigel and André Gratias in the “Flow Control Actuators and Systems“-team. So far the usual approach has been trial and error”, Schüller says and adds: “I wanted to develop an optimisation tool that allows for a simulation of as many application parameters as possible.”

The result is a combination of a closed analytical model with a network model, which can calculate all elements analytically for the first time. With this tool the actuators’ performance can be improved for every application.

Schüllers PhD thesis takes a closer look at an application in aviation. Actuators can be integrated into wings or fins e.g. improving the climb and thereby helping to save on fuel. Nevertheless, this integration requires additional assembly work and creates more weight leading to higher fuel consumption, as the scientist explains.

Which is why, Schüller and his team have investigated the integration of actuators into several material compounds and components within the Federal Cluster of Excellence MERGE. They took some inspiration from automotive engineering in this respect. “We try to fight the so called dead wake at the car rear, where turbulences emerge, slowing down the car. Actuators at the rear can counteract this effect”, Schüller explains.

The most important parameters are taken from lightweight design: There are only a few production technologies and materials that are suitable for an especially low weight, the installation space is pre-defined, as are the aerodynamics of the vehicle. According to the chosen technology a variety of actuator designs is possible, because their layout is predetermined technologically.

Milling, 3D printing, injection moulding and stereo lithography allow only for specific forms of the nozzle and cavity. Innovative fibre-reinforced plastic materials, which are the main focus of MERGE, possess other properties that have to be taken into account for the integration of the actuators.

Interdisciplinarity Ensures Practical Strengths and Economic Efficiency

Mechanical and electrical engineers within the Cluster cooperate with the Faculty of Economics and Business Administration at Chemnitz University of Technology on an interdisciplinary level. Professor Uwe Götze, Professor of Management Accounting and Controlling, and his colleagues investigate the economic efficiency of each of the manufacturing technologies as well as the life cycle of the actuators.

For example, for the aircraft wing. The economists analyse whether the saving in fuel during the launch can make up for the higher fuel consumption during the flight, i.e. whether the use of actuators would be sensible from an economic point of view.

All these parameters - from the manufacturing technology via aerodynamic values up to economic efficiency - are combined in MERGE. Schüller’s optimisation tool can help combine them analytically and create an almost optimal design of the actuators for each respective case.

“We also aim at integrating an adapted actuator system into the rear spoiler of our Chemnitz Car Concept”, Schüller explains. “This is an absolute innovation. Until today there have been studies on actuators in side-view mirrors only, but no implementation has yet been tried for the rear.”

About the Chemnitz Car Concept

Various research areas are merged in the system demonstrator called “Chemnitz Car Concept” (CCC). The “MERGE up!” provided by Volkswagen, serves as a platform for tests and demonstration of the latest research results in cooperation with the Department of Advanced Powertrains. The lightweight vehicle represents the MERGE technologies integrated into an electrically driven car. It will include exemplary parts in the interior and exterior - from lightweight components up to the power train - especially developed and built into the “MERGE up!”.

For more information please contact the project coordinator Martin Schüller, Phone 0371 45001-242, e-mail martin.schueller@enas.fraunhofer.de

For more information on the Chemnitz Car concept please visit https://www.tu-chemnitz.de/MERGE/ccc.php

Matthias Fejes | idw - Informationsdienst Wissenschaft
Further information:
http://www.tu-chemnitz.de/

More articles from Materials Sciences:

nachricht Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern
20.07.2018 | Princeton University

nachricht Relax, just break it
20.07.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>