Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flexing for the next silicon wave

30.01.2018

A strategy that uses a screen-printed aluminium circuit to make silicon solar cells extremely flexible could enable them to become portable power sources. Developed by KAUST, such power sources could help to satisfy the growing demand for wearable and implantable devices, foldable displays and vehicle-integrated solar panels.

Crystalline silicon is naturally abundant and highly scalable and has reliable and consistent photovoltaic properties that are appealing for the development of industrial solar cells. However, its rigidity and weight have hindered its application for flexible electronics.


Rigid (left) and flexible (right) crystalline silicon-based solar cells.

Credit: © 2017 KAUST

Attempts at enhancing material flexibility by generating thin films, while maintaining device performance, have fallen short: the resulting solar cells have shown a drop in performance for films thinner than 250 micrometers. "At this thickness, one cannot achieve flexible silicon solar cells," says team leader, Muhammad Hussain, from KAUST.

Now, Hussain's team has created a corrugated array comprising thin, rigid silicon segments using so-called interdigitated back contact solar cells. The segments are interconnected by screen-printed aluminum contacts. These contacts are positioned at the rear to optimize light absorption at the front of the solar cell and facilitate any modifications of the active silicon material. The array can bend and adopt various configurations, such as zigzags and bifacial structures, without cracking or losing its power conversion efficiency.

Starting from large-area crystalline silicon solar cells, the researchers etched a small portion of the cells into 140-micrometer-thick strips, while keeping the thickness of the remaining portion above 240 micrometers.

"This allowed us to lower the bending radius of the cell to 140 micrometers while retaining the efficiency of the bulk (18%), record achievements for both silicon solar cell efficiency and bendability," says lead author Rabab Bahabry, a graduating doctoral student from Saudi Arabia who received her bachelor's degree in physics from King Abdulaziz University.

The researchers demonstrated that a series of five corrugated solar cells lit up multicolored light-emitting diodes. They also wrapped the cells around a glass mug to power a miniature humidity detection system placed on a plant leaf. When exposed to light from a desk lamp and humid conditions, the system turned on an LED and sent a notification to a smartphone.

The team is currently investigating ways to exploit these corrugated solar cells, which, according to Hussain, can be deployed in the most complex topologies. "Our approach is suitable for the Internet of Things and can meet a wide application spectrum," he says.

Media Contact

Carolyn Unck
editor@kaust.edu.sa

http://kaust.edu.sa/ 

Carolyn Unck | EurekAlert!
Further information:
https://discovery.kaust.edu.sa/en/article/452/flexing-for-the-next-silicon-wave
http://dx.doi.org/10.1002/aenm.201702221

More articles from Materials Sciences:

nachricht Shape-shifting sheets
21.08.2019 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht New 3D interconnection technology for future wearable bioelectronics
15.08.2019 | Institute for Basic Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films

Since their experimental discovery, magnetic skyrmions - tiny magnetic knots - have moved into the focus of research. Scientists from Hamburg and Kiel have now been able to show that individual magnetic skyrmions with a diameter of only a few nanometres can be stabilised in magnetic metal films even without an external magnetic field. They report on their discovery in the journal Nature Communications.

The existence of magnetic skyrmions as particle-like objects was predicted 30 years ago by theoretical physicists, but could only be proven experimentally in...

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Building an atomic-scale vacuum trap for spin-polarized electrons

23.08.2019 | Physics and Astronomy

Novel paradigm in drug development: Understanding resistance mechanisms to targeted protein degradation

23.08.2019 | Life Sciences

Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films

23.08.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>