Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications for additive manufacturing.


Credit: ORNL

The first-ever 3D printed excavator will include a cab designed by a University of Illinois at Urbana-Champaign student engineering team and printed at DOE’s Manufacturing Demonstration Facility at ORNL using carbon fiber-reinforced ABS plastic.

The excavator will be 3D printed using machines at the Department of Energy’s Manufacturing Demonstration Facility at ORNL to create and assemble three components: the cab where the operator sits, the stick (a large hydraulically articulated arm) and a heat exchanger. The excavator’s stick will be fabricated using the newly installed Wolf System, a machine that uses a freeform technique in printing large-scale metal components. The heat exchanger will be printed on a Concept Laser machine that produces metal parts through a powder-bed-based laser melting process.

When 3D printing the excavator’s stick and heat exchanger, the team will further develop processes to improve material performance and printability and also validate models that will show how they can adapt to reduce residual stress and distortion.

“The beauty of a project of this size and scope is that it brings together many intelligent people to work on a number of challenges while accomplishing a common goal,” said Lonnie Love, who’s leading the 3D printed excavator project with ORNL’s Manufacturing Systems Research group. He expects the excavator to be printed, assembled and ready to be unveiled in only nine months.

3D printing an excavator for the first time is a learning experience for both seasoned researchers and the next generation of engineers.

A student engineering team from the University of Illinois at Urbana-Champaign won a design competition and recently visited the MDF to watch their cab design take shape on the Big Area Additive Manufacturing machine – the same system co-developed by ORNL and Cincinnati Incorporated that produced a replica Shelby Cobra sports car using carbon fiber-reinforced acrylonitrile butadiene styrene, or ABS, plastic.

“While hundreds of people, many of whom are students, visit the MDF each year, this is the first student group to watch their design 3D printed on one of our large-scale machines,” Love said. Additionally, Georgia Institute of Technology student Clayton Greer worked on the excavator’s stick as an ORNL intern.

“We’re also exposing them to the possibilities that additive manufacturing is affording industry that can help companies from so many different areas whether it’s automotive, construction or other applications yet to be discovered,” he added.

The completed excavator project, known as Project AME (Additive Manufactured Excavator), will be on display at IFPE and CONEXPO-CON/AGG in Las Vegas in March 2017. Plans are in the works to 3D print another excavator cab during a live demonstration at the event.

While 3D printing excavators, or any other construction vehicles, may not become common practice among manufacturers, Love said using AM to print low-volume, high-complexity components could benefit the construction industry by reducing production time and overall cost.

“Additive manufacturing can be used to print components on demand, which could potentially eliminate the need for mass storage, organization and transportation,” Love said.

The project was funded by DOE’s Office of Energy Efficiency and Renewable Energy – Advanced Manufacturing Office. AMO supports applied research, development and demonstration of new materials and processes for energy efficiency in manufacturing as well as platform technologies for the manufacturing of clean energy products. Visit ORNL’s Innovations in Manufacturing website for more information.

Key partners of Project AME include the Association of Equipment Manufacturers, the National Fluid Power Association, the Center for Compact and Efficient Fluid Power and the National Science Foundation.

UT-Battelle manages ORNL for the DOE’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

###

Image #1: https://www.ornl.gov/sites/default/files/1%20ORNL_3D-printed_excavator.JPG

Caption: The first-ever 3D printed excavator will include a cab designed by a University of Illinois at Urbana-Champaign student engineering team and printed at DOE’s Manufacturing Demonstration Facility at ORNL using carbon fiber-reinforced ABS plastic.

Image #2: https://www.ornl.gov/sites/default/files/2%20ORNL_Lonnie_Love_students.JPG

Caption: ORNL’s Lonnie Love, far right, explains the potential impact of additive manufacturing research and development to a student engineering team from the University of Illinois at Urbana-Champaign who toured DOE’s Manufacturing Demonstration Facility at ORNL.

Image #3: https://www.ornl.gov/sites/default/files/3%20ORNL_Lonnie_Love_students_in_BAAM.JPG

Caption: ORNL’s Lonnie Love hosted a University of Illinois at Urbana-Champaign student engineering team who watched their award-winning excavator cab design being printed on the Big Area Additive Manufacturing system at DOE’s Manufacturing Demonstration Facility at ORNL.

MEDIA CONTACT:

Sara Shoemaker
Oak Ridge National Laboratory
Communications
(865) 576-9219; shoemakerms@ornl.gov

Sara Shoemaker | newswise
Further information:
http://www.ornl.gov

Further reports about: ABS Energy Fluid Manufacturing ORNL acrylonitrile butadiene styrene construction plastic

More articles from Materials Sciences:

nachricht Epoxy compound gets a graphene bump
14.11.2018 | Rice University

nachricht Automated adhesive film placement and stringer integration for aircraft manufacture
15.11.2018 | Fraunhofer IFAM

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>