Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Direct Evidence that a Mysterious Phase of Matter Competes with High-Temperature Superconductivity

22.12.2014

SLAC Study Shows “Pseudogap” Phase Hoards Electrons that Might Otherwise Conduct Electricity with 100 Percent Efficiency

Scientists have found the first direct evidence that a mysterious phase of matter known as the "pseudogap" competes with high-temperature superconductivity, robbing it of electrons that otherwise might pair up to carry current through a material with 100 percent efficiency.


SLAC National Accelerator Laboratory

This illustration shows the complex relationship between high-temperature superconductivity (SC) and a mysterious phase called the pseudogap (PG). Copper oxide materials become superconducting when an optimal number of electrons are removed, leaving positively charged “holes,” and the material is chilled below a transition temperature (blue curve). This causes remaining electrons (yellow) to pair up and conduct electricity with 100 percent efficiency. Experiments at SLAC have produced the first direct evidence that the pseudogap competes for electrons with superconductivity over a wide range of temperatures at lower hole concentrations (SC+PG). At lower temperatures and higher hole concentrations, superconductivity wins out.

The result, led by researchers at Stanford University and the Department of Energy’s SLAC National Accelerator Laboratory, is the culmination of 20 years of research aimed at finding out whether the pseudogap helps or hinders superconductivity, which could transform society by making electrical transmission, computing and other areas much more energy efficient.

The new study definitively shows that the pseudogap is one of the things that stands in the way of getting superconductors to work at higher temperatures for everyday uses, said lead author Makoto Hashimoto, a staff scientist at SLAC’s Stanford Synchrotron Radiation Lightsource (SSRL), the DOE Office of Science User Facility where the experiments were carried out. The results were published in Nature Materials.

“Now we have clear, smoking-gun evidence that the pseudogap phase competes with and suppresses superconductivity,” Hashimoto said. “If we can somehow remove this competition, or handle it better, we may be able to raise the operating temperatures of these superconductors.”

Tracking Down Electrons

In the experiments, researchers used a technique called angle-resolved photoemission spectroscopy, or ARPES, to knock electrons out of a copper oxide material, one of a handful of materials that superconduct at relatively high temperatures – although they still have to be chilled to at least minus 135 degrees Celsius.

Plotting the energies and momenta of the ejected electrons tells researchers how they were behaving when they were inside the material. In metals, for instance, electrons freely flow around and between atoms. In insulators, they stick close to their home atoms. And in superconductors, electrons leave their usual positions and pair up to conduct electricity with zero resistance and 100 percent efficiency; the missing electrons leave a characteristic gap in the researchers’ plots.

But in the mid-1990s, scientists discovered another, puzzling gap in their plots of copper oxide superconductors. This “pseudogap” looked like the one left by superconducting electrons, but it showed up at temperatures too warm for superconductivity to occur. Was it a lead-in to superconducting behavior? A rival state that held superconductivity at bay? Where did it come from? No one knew.

“It’s a complex, intimate relationship. These two phenomena likely share the same roots but are ultimately antagonistic,” said Zhi-Xun Shen, a professor at SLAC and Stanford and senior author of the study. “When the pseudogap is winning, superconductivity is losing ground.”

Evidence of Competition

Shen and his colleagues have been using ARPES to investigate the pseudogap ever since it showed up, refining their techniques over the years to pry more information out of the flying electrons.

In this latest study, Hashimoto was able to find out exactly what was happening at the moment the material transitioned into a superconducting state. He did this by measuring not only the energies and momenta of the electrons, but the number of electrons coming out of the material with particular energies over a wide range of temperatures, and after the electronic properties of the material had been altered in various ways.

He discovered clear, strong evidence that at this crucial transition temperature, the pseudogap and superconductivity are competing for electrons. Theoretical calculations by members of the team were able to reproduce this complex relationship.

“The pseudogap tends to eat away the electrons that want to go into the superconducting state,” explained Thomas Devereaux, a professor at Stanford and SLAC and co-author of the study. “The electrons are busy doing the dance of the pseudogap, and superconductivity is trying to cut in, but the electrons are not letting that happen. Then, as the material goes into the superconducting state, the pseudogap gives up and spits the electrons back out. That’s really the strongest evidence we have that this competition is occurring.”

Remaining Mysteries

Scientists still don’t know what causes the pseudogap, Devereaux said: “This remains one of the most important questions in the field, because it’s clearly preventing superconductors from working at even higher temperatures, and we don’t know why.”

But the results pave new directions for further research, the scientists said.

“Now we can model the competition between the pseudogap and superconductivity from the theoretical side, which was not possible before,” Hashimoto said. “We can use simulations to reproduce the kinds of features we have seen, and change the variables within those simulations to try to pin down what the pseudogap is.”

He added, “Competition may be only one aspect of the relationship between the two states. There may be more profound questions – for example, whether the pseudogap is necessary for superconductivity to occur.”

In addition to SLAC and Stanford, researchers from Lawrence Berkeley National Laboratory, Osaka University, the National Institute of Advanced Industrial Science and Technology in Japan, the Japan Atomic Energy Agency, Tokyo Institute of Technology, University of Tokyo and Cornell University contributed to the study. The research was supported by the DOE Office of Science.

SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, Calif., SLAC is operated by Stanford University for the U.S. Department of Energy's Office of Science. For more information, please visit slac.stanford.edu.

SLAC National Accelerator Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time.

For more information, please visit science.energy.gov

Andrew Gordon | newswise

More articles from Materials Sciences:

nachricht New materials: Growing polymer pelts
19.11.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Why geckos can stick to walls
19.11.2018 | Jacobs University Bremen gGmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>