Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding a buckyball in photovoltaic cell

29.09.2010
Polymer-based photovoltaic cells have some real advantages compared to the currently used semiconductor-based cells. They are easy to make and the materials are cheap. The challenge is to figure out how to make efficient cells while keeping the manufacturing cost low.

One approach uses a light-absorbing polymer along with a derivative of a sixty-carbon fullerene molecule, commonly known as a buckyball. For maximum efficiency, the two materials must be present in thin layers near opposite electrodes but most analytical methods cannot distinguish between polymer and the buckyball well enough to characterize the plastic solar cell film.

New research reported in the Journal of Chemical Physics describes a technique that analyzes the reflection of neutrons to locate the buckyballs within the composite material.

"Neutron scattering is not a new technique but it has yet to be widely applied to this class of materials," says researcher Brian Kirby of the National Institute of Standards and Technology. "With this paper, we are providing an instruction book for researchers who want to use neutrons to study polymer photovoltaics."

He points out that while neutron scattering requires a reactor or particle accelerator - not typical lab equipment – scattering facilities are widely available to industrial and academic users.

Because both the polymer and the buckyball are composed mostly of carbon and their locations must be defined within a few nanometers, standard techniques have not provided sufficient resolution to describe the location of the buckyballs. As a result, much of the research on organic solar cells has been a trial and error process. Neutrons happen to interact with the polymer and the buckyball derivative very differently, leading to a sharp contrast.

"Our goal is more effective research on photovoltaic devices," says researcher Jon Kiel of the University of Delaware. "Using this technique, we have confirmed that particles are not distributed in the ideal way and have shown how to evaluate the distribution in new materials."

The article, "Phase-sensitive neutron reflectometry measurements applied in the study of photovoltaic films" by J. W. Kiel, M. E. Mackay, B. J. Kirby, B. B. Maranville and C. F. Majkrzak is published in The Journal of Chemical Physics. http://link.aip.org/link/jcpsa6/v133/i7/p074902/s1

ABOUT THE JOURNAL OF CHEMICAL PHYSICS

The Journal of Chemical Physics publishes concise and definitive reports of significant research in methods and applications of chemical physics. Innovative research in traditional areas of chemical physics such as spectroscopy, kinetics, statistical mechanics, and quantum mechanics continue to be areas of interest to readers of JCP. In addition, newer areas such as polymers, materials, surfaces/interfaces, information theory, and systems of biological relevance are of increasing importance. Routine applications of chemical physics techniques may not be appropriate for JCP. Content is published online daily, collected into four monthly online and printed issues (48 issues per year); the journal is published by the American Institute of Physics. See: http://jcp.aip.org/

ABOUT AIP

The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Jason Bardi | EurekAlert!
Further information:
http://www.aip.org

More articles from Materials Sciences:

nachricht Novel sensors could enable smarter textiles
17.08.2018 | University of Delaware

nachricht Quantum material is promising 'ion conductor' for research, new technologies
17.08.2018 | Purdue University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

20.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>