Fiber optics: One and only

Light traveling in an optical fiber loses power over distance. A number of factors are responsible for this power loss, but one that is particularly important at high data rates is the loss that occurs due to changes in light polarization.

Hui Dong at the A*STAR Institute for Infocomm Research and co-workers1 have developed and tested a method of determining this polarization-dependent loss (PDL) in an optical fiber cable by taking measurements from just one end of the fiber. The new technique avoids the difficulty of having to arrange and coordinate access to both ends of a fiber optic cable, which may be tens of kilometers apart.

In fiber optic networks, PDL predominantly occurs not in the fiber itself but in the couplers and filters used to regulate light in the fiber, and can have a significant impact on signal quality and network performance. Until now the measurement of PDL in cables has required an optical source attached to one end transmitting to a receiver at the other. A technique requiring access to only one end, however, was proposed theoretically by Italian researchers, but had yet to be verified experimentally.

The proposed technique requires the fiber optic cable to be birefringent at the end at which measurements are to be taken— that is, the cable must include imperfections that interact in different ways with the two perpendicular components of light polarization. This polarization-dependent interaction causes the two polarization modes to travel at different speeds, splitting the light beam into two.

The technique then proposes estimating the PDL from the maximum loss encountered in a round-trip along the cable. This can be achieved by measuring light backscatter as photons of light emitted in four different polarization states bounce back from interacting with the molecular structure of the cable. Over a distance of ten kilometers, measurements taken with an experimental setup built by the researchers showed good agreement with measurement made using standard techniques with a light source and receiver at either end.

“We want to continue the experimental work on our PDL measurement in fiber links,” says Dong. “The PDL in a fiber link is a function of fiber length. Using our new technique, we should be able to measure the relationship between PDL and fiber length.” As PDL varies with environmental conditions such as temperature or stress on the cable, the new technique could also be used to sense these changes by detecting PDL variations.

References

Dong, H., Shum, P., Gong, Y. & Sun, Q. Single-ended measurement of polarization-dependent loss in an optical fiber link. IEEE Photonics Technology Letters 23, 185–187 (2011).

Media Contact

Eugene Low Research asia research news

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors