Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faster (cheaper) method for making big bioactive ring molecules

13.12.2016

Ring molecules called cyclic depsipeptides play an important role in living organisms. Microbes make them as part of their chemical arsenal for attacking competitors and they have proven effective as antibiotics, anti-retrovirals and pesticides, among other applications.

One problem, however, has been the difficulty of chemically synthesizing these biomolecules, particularly in larger ring-sizes. Current methods require a large number of chemical steps, each of which increases the time required and reduces the yield of the final product.


Verticilide is a cyclic depsipeptide that is used as a biopesticide. Gray spheres represent carbon atoms, red represents oxygen atoms and blue represents nitrogen atoms.

Credit: Johnston lab, Vanderbilt University

Now a pair of chemists -- Stevenson Professor of Chemistry Jeffrey Johnston and doctoral student Suzanne Batiste from the department of chemistry and Institute of Chemical Biology at Vanderbilt University -- have developed a method that produces cyclic depsipeptides in a single step with high yields and in unusually large sizes, ranging up to rings with 60 atoms.

They describe the new process in a paper titled "Rapid Synthesis of Cyclic Oligomeric Depsipeptides with Positional, Stereochemical and Macrocycle Size-Distribution Control" published this week in the online early edition of the Proceedings of the National Academy of Sciences.

"I don't know of any chemist who wouldn't take a single-step synthesis over one that takes multiple steps," said Johnston.

The Vanderbilt researchers achieved this result by adapting a standard tool in the synthetic organic chemist's toolbox called the "Mitsunobu reaction." Normally, this reaction is used to make one carbon-oxygen bond at a time. Johnston and Batiste modified it so it could be used to stitch monomers - small molecules that link to form molecular chains called oligomers -- together and then bind the ends together to form rings.

The new method enables them to make rings in unusual and much larger sizes than those found in nature and to do so all in a single step.

Once they have synthesized the basic monomer, using others with different chemical units, called decorations, to produce a variety of different bioactive molecules is relatively straightforward.

In addition, the chemists found that they could control the size of the rings being formed by adding different salts to their recipe.

For example, addition of salt sodium tetrafluoroborate tailored the reaction to produce only 24-atom rings. (This is the basic ring structure of the pesticide verticilide that normally requires 14 steps overall to synthesize, but now can be created in only six!) Similarly, the addition of the salt potassium tetrafluoroborate doubles the amount of 36-atom rings, while adding cesium chloride triples the amount of 60-atom rings produced from a single reaction.

"The salts act as templates. So salts of different sizes encourage the formation of rings of different sizes," Johnston explained.

The combination of their chemical make-up and ring structure account for cyclic depsipeptides' biological activity. They can be tailor-made to attach to specific receptors on cell surfaces. Receptors are large proteins with one end on the surface of a cell's outer membrane that respond to the presence of specific molecules in the cell's environment and trigger specific biochemical reactions within the cell. By capping a receptor's outer end, cyclic depsipeptides can either block the receptor or trigger it, depending on how they are designed. For example, verticilide blocks the activity of the ryanodine receptor, which controls the concentration of calcium ions within the cell, in insects but not in mammals.

"There is speculation that large depsipeptide rings may exhibit unique biological properties but efforts to explore this are in the very early stages," said Johnston. "Our new process will help open this new chemical space."

###

The research was funded by National Institute of General Medical Sciences grant NIH GM 063557.

David F Salisbury | EurekAlert!

More articles from Materials Sciences:

nachricht Research finds new molecular structures in boron-based nanoclusters
13.07.2018 | Brown University

nachricht 3D-Printing: Support structures to prevent vibrations in post-processing of thin-walled parts
12.07.2018 | Fraunhofer-Institut für Produktionstechnologie IPT

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>