Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faster, cheaper gas and liquid separation using custom designed and built mesoscopic structures

25.06.2012
Building larger porous coordination polymer architectures

In what may prove to be a significant boon for industry, separating mixtures of liquids or gasses has just become considerably easier.


A composite image showing (left) an alumina-based honeycomb lattice with approximately one micron diameter cells, from which (right) an equivalent porous coordination polymer (PCP) architecture is derived using "reverse fossilization." Credit: Kyoto University iCeMS

Using a new process they describe as "reverse fossilization," scientists at Kyoto University's WPI Institute for Integrated Cell-Material Sciences (iCeMS) have succeeded in creating custom designed porous substances capable of low cost, high efficiency separation.

The process takes place in the mesoscopic realm, between the nano- and the macroscopic, beginning with the creation of a shaped mineral template, in this case using alumina, or aluminum oxide. This is then transformed into an equivalently shaped lattice consisting entirely of porous coordination polymer (PCP) crystals, which are themselves hybrid assemblies of organic and mineral elements.

"After creating the alumina lattice," explains team leader Assoc. Prof. Shuhei Furukawa, "we transformed it, molecule for molecule, from a metal structure into a largely non-metallic one. Hence the term 'reverse fossilization,' taking something inorganic and making it organic, all while preserving its shape and form."

After succeeding in creating both 2-dimensional and 3-dimensional test architectures using this technique, the researchers proceeded to replicate an alumina aerogel with a highly open, sponge-like macro-structure, in order to test its utility in separating water and ethanol.

"Water/ethanol separation has not been commonly possible using existing porous materials," elaborates Dr. Julien Reboul. "The PCP-based structures we created, however, combine the intrinsic nano-level adsorptive properties of the PCPs themselves with the meso- and macroscopic properties of the template aerogels, greatly increasing separation efficiency and capacity."

Lab head and iCeMS Deputy Director Prof. Susumu Kitagawa sees the team's achievement as a significant advance. "To date, PCPs have been shown on their own to possess highly useful properties including storage, catalysis, and sensing, but the very utility of the size of their nanoscale pores has limited their applicability to high throughput industrial processes. Using reverse fossilization to create architectures including larger, mesoscale pores now allows us to begin considering the design of such applications."

The article, "Mesoscopic architectures of porous coordination polymers fabricated by pseudomorphic replication" by Julien Reboul, Shuhei Furukawa, Nao Horike, Manuel Tsotsalas, Kenji Hirai, Hiromitsu Uehara, Mio Kondo, Nicolas Louvain, Osami Sakata, and Susumu Kitagawa is to be published online in the June 24, 2012 issue of Nature Materials.

About WPI-iCeMS

The WPI Institute for Integrated Cell-Material Sciences (iCeMS) at Kyoto University in Japan aims to advance the integration of the cell and material sciences -- both traditionally strong fields for the university -- in a uniquely innovative global research environment. Part of the Japanese science ministry's WPI initiative, the iCeMS combines the biosciences, chemistry, materials science, and physics to capture the potential power of stem cells (e.g., ES/iPS cells) and of mesoscopic sciences (e.g., porous coordination polymers). Such developments hold the promise of significant advances in medicine, pharmaceutical studies, the environment, and industry.

David Kornhauser | EurekAlert!
Further information:
http://www.kyoto-u.ac.jp

More articles from Materials Sciences:

nachricht A new manufacturing process for aluminum alloys
19.06.2019 | DOE/Pacific Northwest National Laboratory

nachricht Innovative powder revolutionises 3D metal printing
19.06.2019 | Technische Universität Graz

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new force for optical tweezers awakens

19.06.2019 | Physics and Astronomy

New AI system manages road infrastructure via Google Street View

19.06.2019 | Information Technology

A new manufacturing process for aluminum alloys

19.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>