Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fast Molecular Rearrangements Hold Key to Plastic’s Toughness

01.12.2008
Plastics are everywhere in our modern world, largely due to properties that render the materials tough and durable, but lightweight and easily workable. One of their most useful qualities, however - the ability to bend rather than break when put under stress - is also one of the most puzzling.

This property, described as "plastic flow", allows many plastics to change shape to absorb energy rather than breaking apart, says University of Wisconsin-Madison chemistry professor Mark Ediger. For example, one type of bulletproof glass stops a bullet by flowing around it without breaking. Regular window glass, unable to flow in this way, would simply shatter.

"This is an odd combination of properties... These materials shouldn't be able to flow because they're rigid solids, but some of them can," he says. "How does that happen?"

Ediger's research team, led by graduate student Hau-Nan Lee, has now described a fundamental mechanism underlying this stiff-but-malleable quality. In a study appearing Nov. 28 in Science Express, they report that subjecting a common plastic to physical stress - which causes the plastic to flow - also dramatically increases the motion of the material's constituent molecules, with molecular rearrangements occurring up to 1,000 times faster than without the stress.

These fast rearrangements are likely critical for allowing the material to adapt to different conditions without immediately cracking.

Plastics are a type of material known to chemists and engineers as polymer glasses. Unlike a crystal, in which molecules are locked together in a perfectly ordered array, a glass is molecularly jumbled, with its constituent chemical building blocks trapped in whatever helter-skelter arrangement they fell into as the material cooled and solidified.

While this atomic disorder means that glasses are less stable than crystals, it also provides molecules in the glass with some wiggle room to move around without breaking apart.

"Polymer glasses are used in many, many different applications," including polycarbonate, which is found in popular reusable water bottles, Ediger says. Aircraft windows are also often made of polycarbonate. "One of the reasons polymer glasses are used is that they don't break when you drop them or fly into a bird at 600 miles per hour."

However, their properties can change dramatically under different physical conditions such as pressure, temperature, and humidity. For example, many polymer glasses become brittle at low temperatures, as anyone knows who has ever dropped a plastic container from the freezer or tried to work on vinyl house siding in cold weather.

As plastics become more and more prevalent in everything from electronics to airplanes, scientists and engineers face questions about the fundamental properties and long-term stability of these materials over a range of conditions.

For example, next-generation commercial aircraft are trending toward including less metal in favor of higher proportions of lightweight polymer materials - roughly 50 percent in the new Boeing 787 compared to only 10 percent in the Boeing 777 - and engineers need to know how these materials will respond to different stresses: a hard landing, strong winds, or changes in temperature or humidity.

"How is it going to respond 20 years from now when it gets twisted, or stretched, or compressed? Is it going to respond by absorbing that energy and staying intact, or is it going to respond by breaking bonds and flying apart into pieces?" asks Ediger.

The Wisconsin team examined the mechanics of a common plastic called polymethylmethacrylate - also known as Plexiglas or acrylic - and found that a pulling force had a pronounced effect on the molecules within the material, speeding up their individual movements by more than a factor of 1,000. The team observed internal molecular rearrangements within 50 seconds that would have taken a full day without the force applied. They believe this increased motion allows the material to flow without breaking.

"When you pull on it, you increase the mobility in the material," Ediger says. "The act of pulling on it actually transforms the glass into a liquid that can then flow. Then when you stop pulling on it, it transforms back to a glass."

The work has benefited from collaboration between chemists and engineers in a Nanoscale Interdisciplinary Research Team (NIRT) supported by the National Science Foundation (NSF), which includes UW-Madison chemical and biological engineering professor Juan de Pablo and groups at the University of Illinois and Purdue University.

"From the most fundamental perspective, we're trying to understand why pulling on a glass allows it to flow," Ediger says. "The answer to that question will help us to better model the behavior of real materials in real applications."

In addition to Ediger and Lee, the paper is authored by Keewook Paeng and Stephen Swallen. The work was funded by NSF.

Mark Ediger, (608) 262-7273, ediger@chem.wisc.edu

Jill Sakai | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Materials Sciences:

nachricht Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern
20.07.2018 | Princeton University

nachricht Relax, just break it
20.07.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>