Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exploring the deep sea – first-time LIBS measurement at 600 bar

16.10.2018

For the first time, scientists at the Laser Zentrum Hannover e.V. (LZH) have succeeded in measuring zinc samples at a pressure of 600 bar using laser-induced breakdown spectroscopy. They were able to show that the LIBS system developed at the LZH is suitable for use in the deep sea at water depths of up to 6,000 meters.

Locating mineral resources on the sea floor has so far been rather expensive. In order to reduce the costs, the LZH is working with eight other European partners to develop a laser-based, autonomous measuring system for underwater use by 2020. The system is supposed to detect samples, such as manganese nodules, and analyze their material composition directly on the deep sea ground.


The measurement of elements with LIBS shall help to locate natural resources in a non-destructive way in the future.

GEOMAR (CC BY 4.0)


For the first time, a zinc sample was measured at 600 bar water pressure using the LIBS system developed by the LZH. Emission lines of zinc-

LZH

Pressure chamber allows simulation of the deep sea

For this purpose, the scientists at the LZH are developing a system for laser-induced breakdown spectroscopy (LIBS) within the scope of the ROBUST project. In order to test the LIBS system developed by LZH under deep-sea conditions, a special pressure chamber was designed and manufactured.

With the pressure chamber, a water depth of 6,500 meters can be simulated with a pressure of up to 650 bar. The chamber is suitable for both freshwater and saltwater and can thus simulate various application scenarios. Through a viewing window, the laser radiation enters the pressure chamber with the test sample to be analyzed.

LIBS is a non-contact and virtually non-destructive method of analyzing chemical elements. Solid materials, liquids and gases can be examined. The method is based on the generation and analysis of laser-induced plasma.

Here, a high-energy laser beam is focused on the sample. The energy of the laser beam in the focal point is so high that plasma is created. The plasma in turn emits an element-specific radiation, which is measured with a spectroscope. The emission lines in the spectrum can be assigned to the chemical elements of the sample.

About ROBUST

The project "Robotic Subsea Exploration Technologies - ROBUST" (grant number: 690416) is funded by the European Union within the framework of the program "Horizon 2020".

Lena Bennefeld | Laser Zentrum Hannover e.V.
Further information:
http://www.lzh.de/

More articles from Materials Sciences:

nachricht Materials scientist creates fabric alternative to batteries for wearable devices
12.11.2018 | University of Massachusetts at Amherst

nachricht A new path through the looking-glass
12.11.2018 | Deutsches Elektronen-Synchrotron DESY

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>