Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exotic materials will change optics, Duke researchers say

19.03.2012
Duke University engineers believe that continued advances in creating ever-more exotic and sophisticated man-made materials will greatly improve their ability to control light at will.

The burgeoning use of metamaterials in the field of optics does not rely on the limited set of materials found in nature, but rather man-made constructs that can be designed to control light's many properties. This control is gained by use of metamaterials, which are not so much single substances but entire man-made structures that can be engineered to exhibit properties not readily found in nature.


This is a portion of a cell making up metamaterial. Credit: Stephane Larouche

In their latest series of experiments, the Duke team demonstrated that a metamaterial construct they developed could create holograms -- like the images seen on credit or bank cards -- in the infrared range of light, something that had not been done before.

The Duke engineers point out that while this advance was achieved in a specific wavelength of light, the principles used to design and create the metamaterial in their experiments should apply in controlling light in most frequencies.

"In the past, our ability to create optical devices has been limited by the properties of natural materials," said Stéphane Larouche, research scientist in electrical and computer engineering at Duke's Pratt School of Engineering. "Now, with the advent of metamaterials, we can almost do whatever we want to do with light.

"In addition to holograms, the approach we developed easily extends to a broad range of optical devices," Larouche said. "If realized, full three-dimensional capabilities open the door to new devices combining a wide range of properties. Our experiments provide a glimpse of the opportunities available for advanced optical devices based on metamaterials that can support quite complex material properties."

The results of Larouche's experiments, which were conducted in the laboratory of senior researcher David R. Smith, a professor of electrical and computer engineering, appeared in an advanced online publication of the journal Nature Materials. The research was supported by the Army Research Office's Multidisciplinary University Research Initiative (MURI).

The metamaterial device fashioned by the Duke team doesn't look anything like a lens, though its ability to control the direction of rays passing through it surpasses that of a conventional lens. While traditional lenses are made of clear substances -- like glass or plastic -- with highly polished surfaces, the new device looks more like a miniature set of tan Venetian blinds.

These metamaterials are constructed on thin slabs of the same material used to make computer chips. Metal elements are etched upon these slabs to form a lattice-like pattern. The metal elements can be arranged in limitless ways, depending on the properties desired.

"There is unquestionable potential for far more advanced and functional optical devices if greater control can be obtained over the underlying materials," Larouche said. "The ability to design and fabricate the components of these metamaterial constructs has reached the point where we can now build even more sophisticated designs.

"We believe that just about any optical device can be made more efficient and effective using these new approaches," he said.

The other members of the team, all from Duke, were Yu-Ju Tsai, Talmage Tyler and Nan M. Jokerst.

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Materials Sciences:

nachricht New materials: Growing polymer pelts
19.11.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Why geckos can stick to walls
19.11.2018 | Jacobs University Bremen gGmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>