Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epoxy compound gets a graphene bump

14.11.2018

Rice scientists combine graphene foam, epoxy into tough, conductive composite

Rice University scientists have built a better epoxy for electronic applications.


Led by scientists at Rice University, researchers have created an epoxy-graphene foam compound that is tough and conductive without adding significant weight. The material is suitable for applications like electromagnetic shielding.

Credit: Rouzbeh Shahsavari Group/Rice University

Epoxy combined with "ultrastiff" graphene foam invented in the Rice lab of chemist James Tour is substantially tougher than pure epoxy and far more conductive than other epoxy composites while retaining the material's low density. It could improve upon epoxies in current use that weaken the material's structure with the addition of conductive fillers.

The new material is detailed in the American Chemical Society journal ACS Nano.

By itself, epoxy is an insulator, and is commonly used in coatings, adhesives, electronics, industrial tooling and structural composites. Metal or carbon fillers are often added for applications where conductivity is desired, like electromagnetic shielding.

But there's a trade-off: More filler brings better conductivity at the cost of weight and compressive strength, and the composite becomes harder to process.

The Rice solution replaces metal or carbon powders with a three-dimensional foam made of nanoscale sheets of graphene, the atom-thick form of carbon.

The Tour lab, in collaboration with Rice materials scientists Pulickel Ajayan, Rouzbeh Shahsavari and Jun Lou and Yan Zhao of Beihang University in Beijing, took their inspiration from projects to inject epoxy into 3D scaffolds including graphene aerogels, foams and skeletons from various processes.

The new scheme makes much stronger scaffolds from polyacrylonitrile (PAN), a powdered polymer resin they use as a source of carbon, mixed with nickel powder.

In the four-step process, they cold-press the materials to make them dense, heat them in a furnace to turn the PAN into graphene, chemically treat the resulting material to remove the nickel and use a vacuum to pull the epoxy into the now-porous material.

"The graphene foam is a single piece of few-layer graphene," Tour said. "Therefore, in reality, the entire foam is one large molecule. When the epoxy infiltrates the foam and then hardens, any bending in the epoxy in one place will stress the monolith at many other locations due to the embedded graphene scaffolding. This ultimately stiffens the entire structure."

The puck-shaped composites with 32 percent foam were marginally denser, but had an electrical conductivity of about 14 Siemens (a measure of conductivity, or inverse ohms) per centimeter, according to the researchers. The foam did not add significant weight to the compound, but gave it seven times the compressive strength of pure epoxy.

Easy interlocking between the graphene and epoxy helped stabilize the structure of the graphene as well. "When the epoxy infiltrates the graphene foam and then hardens, the epoxy is captured in micron-sized domains of the graphene foam," Tour said.

The lab upped the ante by mixing multiwalled carbon nanotubes into the graphene foam. The nanotubes acted as reinforcement bars that bonded with the graphene and made the composite 1,732 percent stiffer than pure epoxy and nearly three times as conductive, at about 41 Siemens per centimeter, far greater than nearly all of the scaffold-based epoxy composites reported to date, according to the researchers.

Tour expects the process will scale for industry. "One just needs a furnace large enough to produce the ultimate part," he said. "But that is done all the time to make large metal parts by cold-pressing and then heating them."

He said the material could initially replace the carbon-composite resins used to pre-impregnate and reinforce fabric used in materials from aerospace structures to tennis rackets.

###

Visiting Rice student Xiao Han, a graduate student at Beihang University, and Rice graduate student Tuo Wang are co-lead authors of the paper. Co-authors are Rice alumni Peter Samora Owuor and Jongwon Yoon, graduate student Sung Hoon Hwang, visiting scholars Chao Wang and Lulu Shen, and postdoctoral researchers Weipeng Wang and Rodrigo Villegas Salvatierra; and Junwei Sha of Tianjin University, China.

Ajayan is chair of Rice's Department of Materials Science and NanoEngineering, the Benjamin M. and Mary Greenwood Anderson Professor in Engineering and a professor of chemistry. Shahsavari is an assistant professor of civil and environmental engineering and of materials science and nanoengineering. Lou is a professor of materials science and nanoengineering. Zhao is a professor at Beihang University. Tour is the T.T. and W.F. Chao Chair in Chemistry as well as a professor of computer science and of materials science and nanoengineering at Rice.

The Air Force Office of Scientific Research and the China Scholarship Council supported the research.

Read the abstract at https://pubs.acs.org/doi/10.1021/acsnano.8b05822.

This news release can be found online at http://news.rice.edu/2018/11/14/epoxy-compound-gets-a-graphene-bump/

Follow Rice News and Media Relations via Twitter @RiceUNews.

Related materials:

Rice U. chemists create 3D printed graphene foam: http://news.rice.edu/2017/06/21/rice-u-chemists-create-3-d-printed-graphene-foam/

James M. Tour Group: https://www.jmtour.com

Ajayan Research Group: http://ajayan.rice.edu

Multiscale Materials Laboratory: https://rouzbeh.rice.edu

Lou Group: http://n3lab.rice.edu

Rice Department of Chemistry: https://chemistry.rice.edu

Rice Department of Materials Science and NanoEngineering: https://msne.rice.edu

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,962 undergraduates and 3,027 graduate students, Rice's undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 2 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Media Contact

David Ruth
david@rice.edu
713-348-6327

 @RiceUNews

http://news.rice.edu 

David Ruth | EurekAlert!
Further information:
http://dx.doi.org/10.1021/acsnano.8b05822

Further reports about: Materials Science NanoEngineering epoxy foam graphene graphene foam

More articles from Materials Sciences:

nachricht New molten metal hybrid filters from TU Freiberg will make components even safer and more resistant in the future
28.02.2020 | Technische Universität Bergakademie Freiberg

nachricht KIST researchers develop high-capacity EV battery materials that double driving range
24.02.2020 | National Research Council of Science & Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

New molten metal hybrid filters from TU Freiberg will make components even safer and more resistant in the future

28.02.2020 | Materials Sciences

Polymers get caught up in love-hate chemistry of oil and water

28.02.2020 | Life Sciences

Two NE tree species can be used in new sustainable building material

28.02.2020 | Architecture and Construction

VideoLinks
Science & Research
Overview of more VideoLinks >>>