Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environmentally friendly corrosion protection shows its effect by simple spraying

05.04.2012
Materials researchers from Saarbruecken developed a new composite material, which prevents corrosion of metals even under extreme conditions in an environmentally friendly way.

It can be used, wherever metals are exposed to strong weather conditions, aggressive gases, salty media, extensive wear and tear or high pressure. From 23 to 27 April 2012, researchers of INM — Leibniz Institute for New Materials present their results at the leading trade fair "Research and Technology" in Hall 2 at the stand C54.


corrosion protection
Foto: Uwe Bellhäuser

"This patented composite shows its effect by simple spraying", explains Carsten Becker-Willinger, head of the program division "Nanomere". "What makes this coating so special is its structuring: The protective particles arrange themselves like roof-tiles. Similar to a wall, several layers of particles arrange themselves in a staggered pattern on top of each other, resulting in a self-organized, highly structured barrier", says the expert for chemical nanotechnology.

The protective coating is only a few millimeters thick and prevents the penetration of gases and electrolytes. It protects from corrosion caused by aggressive aqueous solutions, such as salty solutions (e.g. splash water containing road salt or sea water) or aqueous acids (e.g. acid rain). The protective coating is also an effective barrier against corrosive gases or under pressure.

After thermal curing, the composite adheres on metallic substrate, it is abrasion- and impact-resistant. For this purpose, it also withstands a highly mechanical load: The coating passes the ball-drop test with a 1.5 kg semi-spherical steel ball, which is dropped from a height of 1 metre without causing parts to chip off or the coating to crack. Only light deformation is shown. Thus, the new material can also be used with sand or mineral dust without wear and tear.

The composite can be deposited by spraying or with other wet-chemical processes and cured at temperatures from 150 to 200°C. It is suitable for steel, metal alloys or copper. Panels, tubes, cogwheels, tools or engine parts in any shape can be coated. The special mixture consists of a solvent, a binder and nanoscale platelet-like particles, but no chrome VI or other heavy metals.

Contact:
Dr. Carsten Becker-Willinger
Program Division „Nanomere“
INM – Leibniz-Institut für Neue Materialien
Phone: +49 681 9300 196
Email: nanomere@inm-gmbh.de
INM, situated in Saarbruecken/Germany, is an internationally leading research centre for innovative materials. Specialised in the three research fields of Chemical Nanotechnology, Interface Materials and Materials in Biology, the institute provides research and development from molecule to pilot production delivered by a highly skilled team of chemists, physicists, biologists, materials and engineering scientists. It cooperates with national and international institutes and develops materials with tailor-made properties for companies throughout the world. INM is an institute of the Scientific Association Gottfried Wilhelm Leibniz and employs around 190 collaborators.

Dr. Carola Jung | idw
Further information:
http://www.inm-gmbh.de/
http://www.wgl.de/

More articles from Materials Sciences:

nachricht Research finds new molecular structures in boron-based nanoclusters
13.07.2018 | Brown University

nachricht 3D-Printing: Support structures to prevent vibrations in post-processing of thin-walled parts
12.07.2018 | Fraunhofer-Institut für Produktionstechnologie IPT

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>