Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Entangled frameworks limber up

20.09.2010
The degree of interconnectivity of molecular frameworks in microporous materials influences their structural flexibility and gas sorption

The quest to tune the three-dimensional (3D) molecular frameworks of materials called porous coordination polymers (PCPs) has taken a step forward thanks to a research team led by Ryotaro Matsuda and Susumu Kitagawa at the RIKEN SPring-8 Center in Harima and Kyoto University, Japan. The team, with members from Osaka Prefecture University, has described the influence of interpenetration of PCPs on the structural flexibility and gas sorption behavior of these materials1, which show great potential for use in gas storage, heterogeneous catalysis and as separation materials.

The interpenetrated molecular frameworks of PCPs are composed of metal ions and bridging organic ligands. Materials scientists initially thought that interpenetration would reduce the available capacity of the voids within the structure. However, other researchers showed recently that such entangled structures exhibit high gas-uptake, as a result of increased internal surface area. Interpenetration also increases the thermal stability of flexible frameworks.

These findings prompted Matsuda, Kitagawa and colleagues to make PCPs with the same chemical components but with either two-fold or three-fold interpenetration. Both forms of the 3D frameworks were made using a solvent templating method and were composed of zinc atoms and carboxylate- and pyridyl-based organic ligands. The two forms allowed the researchers to test the correlation between various physical properties and the degree of entanglement of the polymers.

Crystal structure analyses of the two forms indicated that non-covalent interactions, namely ð–ð interactions, in the three-fold structure are more significant than in the two-fold structure. Consequently, the two-fold structure has a more flexible structure and is of lower thermal stability than the more rigid three-fold PCP.

Using coincident x-ray powder diffraction and adsorption measurements, the team also showed that the two forms of structures have completely different carbon dioxide (CO2) adsorption behavior. The two-fold structure can adsorb four times the amount of saturated CO2 than the three-fold structure, owing to its greater flexibility and dynamic capability. Sorption occurs as a stepwise progression as a result of crystallographic transformations triggered by the addition and removal of guest molecules.

“The next challenge is the control of adsorption properties by external stimuli such as light or magnetic field to realize on-demand gas separation and storage,” says Matsuda. “This kind of material could be used to separate CO2 which is discharged from steelworks or to remove CO2 and hence keep air fresh in a spaceship.”

The corresponding author for this highlight is based at the Spatial Order Research Team, RIKEN SPring-8 Center

Journal information

1. Bureekaew, S., Sato, H., Matsuda, R., Kubota, Y., Hirose, R., Kim, J., Kato, K., Takata, M. & Kitagawa, S. Control of interpenetration for tuning structural flexibility influences sorption properties. Angewandte Chemie International Edition published online 2 July 2010 (doi: 10.1002/anie.201002259).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6390
http://www.researchsea.com

More articles from Materials Sciences:

nachricht 3D inks that can be erased selectively
16.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Designing Nanocrystals for more efficient Optoelectronics
16.08.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>