Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers demonstrate mechanics of making foam with bubbles in distinct sizes

07.12.2018

It's easy to make bubbles, but try making hundreds of thousands of them a minute - all the same size.

Rice University engineers can do that and much more. Rice chemical and biomolecular engineer Sibani Lisa Biswal and lead author and graduate student Daniel Vecchiolla have created a microfluidic device that pumps out more than 15,000 microscopic bubbles a second and can be tuned to make them in one, two or three distinct sizes.


A sequence shows the progression of bidisperse foam generation in a microfluidic device created at Rice University. When bubbles enter, they pinch the preceding bubble into two before becoming a wall against which the next bubble will be pinched.

Credit: Biswal Lab/Rice University


An illustration shows the mechanism by which foam with bubbles in two distinct sizes is created in a microfluidic device. Rice University engineers discovered the technique to make foam with bubbles in two or three distinct sizes.

Credit: Eric Vavra/Biswal Lab

The work featured on the cover of the Royal Society of Chemistry journal Soft Matter enables customizable, "wet" foams in small amounts for applications that include chemical and biological studies.

The best part is that the bubbles themselves do the hard part.

A movie that demonstrates the mechanism shows elongated bubbles shooting through a tube into an input channel. Each arrow-like bubble moves with enough force to split the bubble ahead of it, but the arrow remains intact.

It takes its place between the new "daughter" bubbles and becomes a "wall" that holds the next bubble in place for splitting. In that way, only every other bubble entering the expansion splits from the inter-bubble forces.

Vecchiolla described the process as "metronomic," the tick being a bubble splitting and the tock a bubble that remains whole.

When the input is centered and all the other parameters - the type of liquid, its viscosity, the flow rate and the width of the channel - are right, the device fills with large bubbles in the middle and two ranks of identical, smaller bubbles along the edges. When the input is offset, the stream produces bubbles in three sizes.

"There's interest in using monodisperse bubbles for material applications and miniaturized reactors, so there's been a lot of studies about the generation of uniformly sized gas bubbles," Biswal said. "But there have been very few that looked at using neighboring bubbles to create these daughter bubbles. We're able to generate well-ordered foam systems and control the size distribution."

Recent alumna Vidya Giri helped create the microfluidic channels, which are about one-twentieth of an inch wide with a feeder channel of about 70 microns.

Biswal is an associate professor of chemical and biomolecular engineering and of materials science and nanoengineering. The National Science Foundation supported the research.

###

Read the abstract at https://pubs.rsc.org/en/content/articlelanding/2018/sm/c8sm01285g#!divAbstract.

Related materials:

Foam favorable for oil extraction: http://news.rice.edu/2014/08/12/foam-favorable-for-oil-extraction-2/

Clues to foam formation could help find oil: http://news.rice.edu/2013/10/07/clues-to-foam-formation-could-help-find-oil-2/

Biswal Lab: http://www.ruf.rice.edu/~biswalab/Biswal_Research_Group/Welcome.html

Department of Chemical and Biomolecular Engineering: https://chbe.rice.edu

Department of Materials Science and NanoEngineering: https://msne.rice.edu

George R. Brown School of Engineering: https://engineering.rice.edu

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,962 undergraduates and 3,027 graduate students, Rice's undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 2 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Media Contact

David Ruth
david@rice.edu
713-348-6327

 @RiceUNews

http://news.rice.edu 

David Ruth | EurekAlert!
Further information:
http://dx.doi.org/10.1039/C8SM01285G

More articles from Materials Sciences:

nachricht Understanding high efficiency of deep ultraviolet LEDs
22.02.2019 | Tohoku University

nachricht Large-scale window material developed for PM2.5 capture and light tuning
18.02.2019 | University of Science and Technology of China

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>