Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineering at the Atomic Scale

31.07.2013
Wake Forest researchers are part of a national effort to design a super filter to clean up carbon dioxide emissions

Could a substance that resembles baby powder curb global carbon emissions?

Wake Forest University researchers believe so, and a new Department of Energy (DOE) grant worth more than $1 million will enable them and collaborators at the University of Texas at Dallas to design a novel material that could help revolutionize green engineering.

Discovered less than a decade ago, a Metal Organic Framework (MOF) is a material scientists can engineer down to the molecular and atomic scale.

A microscopic view shows how each powdery crystal contains millions of metal ions joined together with organic bonds to form highly porous, three-dimensional structures.

Because they are inexpensive and can easily be grown overnight, MOFs hold enormous potential for a new generation of clean engineering, from super-efficient CO2 filters to helping make hydrogen powered vehicles a reality.

“The advantages of this stuff are mind blowing,” said Prof. Timo Thonhauser, a physicist at Wake Forest University. “Gas molecules such as methane and carbon dioxide easily diffuse into MOFs, which can store them in high quantities and with unprecedented selectivity.”

For example, a fuel tank filled with MOF crystals can store twice as much natural gas as its conventional counterpart, enabling a car to go twice as far on a single tank. Ecofuel World Tour driver Rainer Zietlow proved this by driving a Volkswagen automobile with a MOF tank more than 45,000 miles to test the utility of the technology.

A sponge-like gatekeeper

MOFs can be designed to attract and store specific molecules while letting others pass through their porous, grid-like structure. Thonhauser’s group is collaborating with scientists at the UT Dallas and Rutgers University to harness this capability by designing super-efficient filters to trap carbon dioxide emitted by industrial plants.

To date, trapping individual carbon dioxide atoms from car engines or coal plants has been difficult because the molecules are so small. “If the pores in a filter are too big everything is going to go through,” Thonhauser said. “Conventional filters are too coarse to catch most of this stuff. So we need to develop something that can selectively filter out specific, small atoms.”

Thonhauser explains that one challenge with current MOF filters is that while they can trap carbon dioxide emitted when burning a fossil fuel like coal they also hold on to water molecules. “Once the water builds up, the filter won’t hold on to CO2 anymore,” he said.

This is where Brian Shoemaker, an undergraduate research fellow in Thonhauser’s lab, comes in. He is swapping different metals like magnesium, iron, gold and platinum into a computer simulation to see which types of metals work best in a MOF carbon dioxide filter.

“What you really want is a filter on a molecular level that picks up one guy among hundreds of others,” Shoemaker, a rising senior, said. “This is a really exciting project to work on because it is something that really hasn’t been done to date.”

Parting the sea

Shoemaker is also helping Thonhauser with another piece of MOF-based research that could help make the world a much cleaner place.

“In the future, we envision cars that run on hydrogen instead of gas,” Thonhauser said. “One of the big questions that remains in this line of research is where do I get the hydrogen?”

Our preliminary studies suggest the possibility of MOF materials being used to split water – one of the world’s most abundant natural resources – into its separate components, hydrogen and oxygen.

Thonhauser explains that currently water can be split with various techniques, but those are all not very efficient.

“It is not clear by any means, but there is a possibility that MOFs might be able to split water effectively someday,” Thonhauser said. “Brian is testing different metals to see if we can find one that will bind oxygen while letting the hydrogen pass through. If that were the case, it would be mind-boggling. It is a long shot, but you just don’t know.”

Will Ferguson | Newswise
Further information:
http://www.wfu.edu

More articles from Materials Sciences:

nachricht Research finds new molecular structures in boron-based nanoclusters
13.07.2018 | Brown University

nachricht 3D-Printing: Support structures to prevent vibrations in post-processing of thin-walled parts
12.07.2018 | Fraunhofer-Institut für Produktionstechnologie IPT

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>