Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electron beam strengthens recyclable nanocomposite

17.06.2019

Polymers reinforced with carbon fibers combine strength and low weight. They also boast significant green credentials as they are less resource-intensive during production and use, and they are readily recycled. While the mechanical properties of continuous-fiber laminates are sufficiently competitive for applications in aerospace and automobiles, composites reinforced with short carbon fibers could be attractive for fast-manufacture, and even 3D printing for applications with more moderate strength requirements.

As a result, there is keen interest in optimizing the mechanical properties of short-fiber reinforced thermoplastics to maximize on the potential of these materials. László Szabó and Kenji Takahashi and colleagues at Kanazawa University and Kanazawa Institute of Technology have now demonstrated that irradiating short carbon fiber thermoplastics with an electron beam can improve their mechanical properties.


Carbon fiber reinforced plastic using cellulose based thermoplastic.

Credit: Kanazawa University

The researchers limited their study to polymers that thermoplastic so that the resulting composite could be readily recycled and remolded into other forms. With environmentally friendly concerns in mind they focused the study on the biobased cellulose propionate for the composite matrix.

Their study included investigation of the effects of electron beam irradiation on the strength for polymers functionalized with esters to increase crosslinking, and enhanced with carbon fibers, as well as different forms during irradiation (dumbbells and pellets) and long and short extrusion nozzles.

While the researchers were able to demonstrate a level of control over crosslinking under radiation with the use of functionalizing esters, this was not always beneficial for the mechanical properties, particularly when the network of polymers hindered the mobility of the fibers.

In addition, there is known to be a minimum carbon fiber length below which their inclusion compromises rather than enhances the tensile strength of the composite as their presence causes cracks.

Despite the potential drawbacks of carbon fiber inclusion and irradiation induced crosslinking, the researchers found that irradiating pellets of short-carbon-fiber composite made them stronger.

Further studies suggested that the irradiation strengthened and lengthened the carbon fibers, while irradiating pellets and making dumbbells from the pellets left sufficient uncrosslinked polymer matrix for some carbon fiber mobility to mitigate stresses. The shorter nozzle, also diminished effects that shorten carbon fiber during extrusion.

"The composite retains its potential for recyclability (i.e. still thermoplastic) and the treatment is practically chemical-free," report the researchers. Future work may include further mechanical characterization of the material.

###

Background

1) Environmental benefits of carbon fiber reinforced thermoplastics

Lower mass materials require less fuel to move them, so that exploiting light weight properties of thermoplastics in automobile applications could decrease fuel requirements. In addition, thermoplastics can be processed easily from largely benign components making them more readily recycled.

Obtaining carbon fibers is also becoming increasingly sustainable, with reports of carbon fibers produced from lignin in biomass. As a result the use of carbon fibers to enhance the mechanical properties of thermoplastic polymers could provide an environmentally friendly material option for applications where mechanical stresses and strains experienced are moderate.

2) Irradiation and crosslinking

Irradiation leads to both chain scission and crosslinking effects in polymers. In cellulose propionate the chain scission greatly outweighs crosslinking. While functionalizing with esters could enhance crosslinking under irradiation, the researchers found that this actually diminished the tensile strength as the polymer became stiffer.

Adding carbon fibers can provide sites that initiate cracks. If the carbon fibers are long enough the overall effect is still a stronger material but for short carbon fibers, their inclusion can actually weaken the composite. In addition crosslinking in the polymer matrix can inhibit fiber mobility, so that stresses build up.

The researchers also found that extrusion can further shorten carbon fibers, an effect that a shorter extrusion nozzle can help to mitigate. Irradiation has a positive effect on carbon fiber strength and length by forming free radicals that form covalent bonds between planes in the graphitic fiber structure. As a result producing dumbbells from irradiated carbon-fiber-enhanced polymer pellets improved the material's mechanical properties; the irradiation led to stronger longer carbon fibers, and making the dumbbells from irradiated pellets led to some uncrosslinked matrix from the different pellets to allow fiber movement.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

Tomoya Sato | EurekAlert!
Further information:
http://dx.doi.org/10.1016/j.compositesa.2019.03.046

More articles from Materials Sciences:

nachricht Thermophones offer new route to radically simplify array design, research shows
03.07.2020 | University of Exeter

nachricht The lightest electromagnetic shielding material in the world
02.07.2020 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>