Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Elastic Electronics: Stretchable Gold Conductor Grows Its Own Wires

19.07.2013
Networks of spherical nanoparticles embedded in elastic materials may make the best stretchy conductors yet, engineering researchers at the University of Michigan have discovered.

Flexible electronics have a wide variety of possibilities, from bendable displays and batteries to medical implants that move with the body.


Courtesy of Nicholas Kotov

LEFT: an electron microscope image of the gold nanoparticles in a relaxed sample of the layer-by-layer material. The nanoparticles are dispersed. RIGHT: a similar sample stretched to a little over twice its original length, at the same magnification. The nanoparticles form a distinct network

"Essentially the new nanoparticle materials behave as elastic metals," said Nicholas Kotov, the Joseph B. and Florence V. Cejka Professor of Engineering. "It's just the start of a new family of materials that can be made from a large variety of nanoparticles for a wide range of applications."

Finding good conductors that still work when pulled to twice their length is a tall order — researchers have tried wires in tortuous zigzag or spring-like patterns, liquid metals, nanowire networks and more. The team was surprised that spherical gold nanoparticles embedded in polyurethane could outcompete the best of these in stretchability and concentration of electrons.

"We found that nanoparticles aligned into chain form when stretching. That can make excellent conducting pathways," said Yoonseob Kim, first author of the study to be published in Nature on July 18 and a graduate student in the Kotov lab in chemical engineering.

To find out what happened as the material stretched, the team took state-of-the-art electron microscope images of the materials at various tensions. The nanoparticles started out dispersed, but under strain, they could filter through the minuscule gaps in the polyurethane, connecting in chains as they would in a solution.

"As we stretch, they rearrange themselves to maintain the conductivity, and this is the reason why we got the amazing combination of stretchability and electrical conductivity," Kotov said.

The team made two versions of their material—by building it in alternating layers or filtering a liquid containing polyurethane and nanoparticle clumps to leave behind a mixed layer. Overall, the layer-by-layer material design is more conductive while the filtered method makes for extremely supple materials. Without stretching, the layer-by-layer material with five gold layers has a conductance of 11,000 Siemens per centimeter (S/cm), on par with mercury, while five layers of the filtered material came in at 1,800 S/cm, more akin to good plastic conductors.

The eerie, blood-vessel-like web of nanoparticles emerged in both materials upon stretching and disappeared when the materials relaxed. Even when close to its breaking point, at a little more than twice its original length, the layer-by-layer material still conducted at 2,400 S/cm. Pulled to an unprecedented 5.8 times its original length, the filtered material had an electrical conductance of 35 S/cm—enough for some devices.

Kotov and Kim chiefly see their stretchable conductors as electrodes. Brain implants are of particular interest to Kotov.

"They can alleviate a lot of diseases—for instance, severe depression, Alzheimer's disease and Parkinson's disease," he said. "They can also serve as a part of artificial limbs and other prosthetic devices controlled by the brain."

Rigid electrodes create scar tissue that prevents the electrode from working over time, but electrodes that move like brain tissue could avoid damaging cells, Kotov said.

"The stretchability is essential during implantation process and long-term operation of the implant when strain on the material can be particularly large," he said.

Whether in the brain, heart or other organs—or used for measurements on the skin—these electrodes could be as pliable as the surrounding tissue. They could also be used in displays that can roll up or in the joints of lifelike "soft" robots.

Because the chain-forming tendency of nanoparticles is so universal many other materials could stretch, such as semiconductors. In addition to serving as flexible transistors for computing, elastic semiconductors may extend the lives of lithium-ion batteries. Kotov's team is exploring various nanoparticle fillers for stretchable electronics, including less expensive metals and semiconductors.

Kotov is a professor of chemical engineering, biomedical engineering, materials science and engineering and macromolecular science and engineering.

The study is titled "Stretchable Nanoparticle Conductors with Self-Organized Conductive Pathways." The work is funded by the STX foundation in Seoul, South Korea; U.S. Department of Energy's Office of Science; Defense Advanced Research Projects Agency; Air Force Office of Scientific Research; and National Science Foundation. U-M is pursuing patent protection for the intellectual property and seeking commercialization partners to help bring the technology to market.

Watch and embed the video at www.youtube.com/watch?v=KQ7_TPSSfys.

Nicole Casal Moore | Newswise
Further information:
http://www.umich.edu

More articles from Materials Sciences:

nachricht Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern
20.07.2018 | Princeton University

nachricht Relax, just break it
20.07.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>