Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of 3D Charge Density Wave in High-temperature Superconductivity

10.12.2015

An international research team has found a surprising three-dimensional arrangement of electrons in the Y-based high-temperature superconductor.

The team - comprising researchers from Japan's Tohoku University, SLAC National Accelerator Laboratory, Stanford University in USA and University of British Colombia in Canada - made the discovery while successfully combining powerful magnetic field pulses with some of the brightest X-rays on the planet.


Fig. 1 The blend of intense magnetic and X-ray laser pulses uncover the mystery of high temperature superconductor.

Copyright : Tohoku University


Fig. 2 The IMR mini magnet used for the experiment is only 25.4 mm long.

Copyright : Tohoku University

The localization of electrons forming the special regular patterns called a charge density wave (CDW) had previously been known as a mysterious phenomenon of high temperature superconductivities. That is because the direct observation of CDW in very high magnetic fields had been considered an "impossible mission" due to the absence of high magnetic field device compatible with X-ray free electron laser.

But the IMR group has now developed an inch-size miniature pulsed magnet that can generate an extremely strong magnetic field of 30 Tesla and installed it into the beam line of a Linac Coherent Light Source at SLAC.

The results resolve discrepancies found in previous experiments, and offer a new picture of the behaviors of electrons in these exotic materials under extreme conditions. The researchers hope this will aid the design and development of new superconductors that work at higher temperatures.

This study was supported by IMR through the ICC-IMR Research Project and by the Interdepartmental Doctoral Degree Program for Multi-dimensional Materials Science Leaders (MD program).

Publication Details :

Authors:
S. Gerber, H. Jang, H. Nojiri, S. Matsuzawa, H. Yasumura, D. A. Bonn, R. Liang, W. N. Hardy, Z. Islam, A. Mehta, S. Song, M. Sikorski, D. Stefanescu, Y. Feng, S. A. Kivelson, T. P. Devereaux, Z.-X. Shen, C.-C. Kao, W.-S. Lee, D. Zhu, J.-S. Lee

Title:
Three-dimensional charge density wave order in YBa2Cu3O6.67 at high magnetic fields
Journal: Science
DOI: 10.1126/science.aac6257

Contact:
Prof. Hiroyuki Nojiri
Magnetism Division
Institute for Materials Research, Tohoku University
Tel: +81-22-215-2017
Email: nojiriimr.tohoku.ac.jp

Mr. Satoshi Matsuzawa
Institute for Materials Research
Interdepartmental Doctoral Degree Program for Multi-dimensional Materials Science Leaders (MD program), Tohoku University
Tel: +81-22-215-2017
Email: matsuzawaimr.tohoku.ac.jp

Associated links
Original article from Tohoku University

Ngaroma Riley | Research SEA
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht High-temperature electronics? That's hot
07.12.2018 | Purdue University

nachricht Researchers develop method to transfer entire 2D circuits to any smooth surface
07.12.2018 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>