Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Direct observation of topology hidden inside materials

08.03.2018

Determining the topological nature of materials by their substances is more important than their appearance

Topology hidden inside materials in the matter group called cerium monopnictides has been determined for the first time in the world.


These are electronic structures of Ce monopnictides which observed by soft X-ray angle-resolved photoemission spectroscopy, and its topological phase transition.

Credit: © 2018 Kenta Kuroda

The topological electronic phase distinguished by the latent topology inside materials is the award-winning subject of the Nobel Prize in Physics 2016, research on which is now being actively conducted all over the world.

In the topological electronic phase, an electronic state peculiar to the topological electronic phase occurs at the surface of materials (appearance), reflecting topology hidden inside materials (substances). For this reason, topology of a substance has been judged only by its appearance.

A joint research group succeeded in observing the topological phase transition in which a material changes to the topological electronic phase by using soft X-rays, light suitable for determining the topology of materials by their substances rather than by their appearance.

Since this research achievement enables direct determination of the essential topology hidden inside materials without judging the surface of the materials, it is expected that employing this technique will lead to the discovery of more diverse topological electronic phases.

###

This result was achieved by the research group of Assistant Professor Kenta Kuroda and Associate Professor Takeshi Kondo of the Institute for Solid State Physics, the University of Tokyo (Director Masashi Takigawa), in collaboration with Team Leader Ryotaro Arita (RIKEN Center for Emergent Matter Science), Assistant Professor Masayuki Ochi (the Graduate School of Science, Osaka University), Senior Scientist Takayuki Muro (Japan Synchrotron Radiation Research Institute), Deputy Director-General Hideyuki Kitazawa (National Institute for Materials Science) and Principle Researcher Yoshinori Haga (Japan Atomic Energy Agency).

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.

Website: http://resou.osaka-u.ac.jp/en/top

Saori Obayashi | EurekAlert!

More articles from Materials Sciences:

nachricht Carnegie Mellon researchers create soft, flexible materials with enhanced properties
24.05.2019 | Carnegie Mellon University

nachricht Plumbene, graphene's latest cousin, realized on the 'nano water cube'
23.05.2019 | Nagoya University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>