Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Development of High Sensitivity Detection Method for Diluted Ionic Mercury in Water

07.03.2013
A research group at WPI-MANA have discovered that it is possible to detect diluted ionic mercury in water with more than 10 times higher sensitivity than with the conventional spectroscopy method.

A research group of WPI-MANA, including Dr. Chung Vu Hoang (Doctoral Research Fellow) at MANA (International Center for Materials Nanoarchitectonics), NIMS (National Institute for Materials Science, President: Sukekatsu Ushioda), Dr. Tadaaki Nagao, Group Leader of the NIMS Nano-System Photonics Group, Dr. Masakazu Aono, Director-General of MANA, and others discovered that it is possible to detect of ionic mercury, with more than 10 times higher sensitivity than with the conventional spectroscopy method.


Figure: (a) Schematic of the surface coating material (DNA aptamer). Only the ionic mercury is selectively adsorbed; organic molecules are not trapped. (b) Lake Kasumigaura, where the natural water was sampled. (c) Schematic of a nanogap on the gold surface, which was coated with the surface coating material.

Ionic mercury is a harmful substance when dissolved in rivers, lakes, marshes, etc. in even trace amounts. In contrast to the conventional spectroscopic detection method, the infrared spectroscopy detection method was used in detection.

Mercury is a serious environmental pollutant which is hard to control and decontaminate. Its sources range from small scale gold mines, metal refining plants, to combustion of fossil fuels, volcanic activity, and crematoriums. In everyday products, it is emitted from dry cell batteries, fluorescent tubes, thermometers, blood pressure gauges, and so on. As mercury is easily vaporized at room temperature and diffuses rapidly in the atmosphere, it is a ubiquitous pollutant on a global scale.
On January 19, 2013, the United Nations ratified a new Convention on Mercury Control, following multinational negotiations that began on January 13. Because mercury contamination generally accumulates in living organisms and gradually progresses over time, early detection of low concentrations of mercury in environmental water is an important issue.

In this research, the NIMS group developed a method of detecting ionic mercury from water selectively and with high sensitivity by fabricating a gold nanogap structure coated with molecules which shows strong specific adsorption of ionic mercury. Although infrared spectroscopy had been believed to be unsuitable for the measurement of trace amounts of analytes in water, the unnecessary spectrum of water was reduced by using plasmons formed in the nanogaps of the gold, making it possible to apply this method. The NIMS researchers also found that the detection limit of ionic mercury with a standard Fourier transform infrared (FT-IR) spectrometer can be decreased to the ppt (part per trillion) level as a result of the improved sensitivity obtained by plasmon field enhancement in the nanogaps.

Ionic mercury dissolved in water cannot be measured as-is by infrared spectroscopy. However, by selective adsorption by the surface coating material in this work, it was possible to selectively detect ionic mercury and other components when mercury was intentionally dissolved at a concentration on the order of 30ppt in natural water from Lake Kasumigaura. From this research, it was found that mercury contamination of lakes and rivers can be assessed from trace levels using infrared spectroscopy. In the future, this detection method is expected to be developed into simple, precise monitoring techniques. Such techniques are expected for contributing to the detection of other types of environmental pollutions as well as to the industrial waste water treatment.

These research results will be published in the online bulletin of Scientific Reports on February 6, 2013 (Japan time).

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/news/press/2013/02/p201302060.html
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Breakthrough in nanoresearch - Quantum chains in graphene nanoribbons
09.08.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht UNH Researchers find seed coats could lead to strong, tough, yet flexible materials
08.08.2018 | University of New Hampshire

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>