Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detecting damage in non-magnetic steel with the help of magnetism

23.07.2018

Researchers at JGU and the University of Kaiserslautern publish results of study of materials testing

Wear, corrosion, material fatigue are signs of degradation that are common to most materials. This makes it all the more important to detect damage early, preferably on the micrometer scale. Magnetic test methods are often used for this purpose, which was previously impossible with non-magnetic steel.


Dr. Martin Jourdan and Bachelor degree student Moritz Krämer coating non-magnetic steel with various magnetic films, each 20 nanometers thick, using the coating apparatus at JGU's Institute of Physics.

Credit: photo/©: Martin Jourdan

Usage Restrictions: This image may only be used in connection with the press release "Detecting damage in non-magnetic steel with the help of magnetism", issued by Johannes Gutenberg University Mainz on July 23, 2018.

Researchers from Kaiserslautern and Mainz have now developed a process in which they apply a thin magnetic layer to steel. Changes in the microstructure can thus be detected by changes in magnetic effects. Materials such as aluminum can also be tested in this way.The corresponding paper has been published recently in the Journal of Magnetism and Magnetic Materials.

Steel is one of the most frequently used materials. We use it in many variants, for example in the form of stainless steel, high-strength quenched and tempered steel, or low-priced structural steel. Steels can be magnetic or non-magnetic. They are used in cutlery, in automotive components, in steel girders of buildings, and in bridges. At times, steel is exposed to high temperatures and stress.

"This can result in microstructural changes, cracks, or component failure," said Dr. Marek Smaga, a researcher at the Department of Materials Science at Technische Universität Kaiserslautern (TUK). This is what experts refer to as material fatigue. Initially, such damage is only visible on the micrometer level. With magnetic testing methods, however, it is not yet possible to detect changes in this scale in non-magnetic steel at an early stage.

Engineers from TUK and physicists from Johannes Gutenberg University Mainz (JGU) are working on this problem and are presenting a solution in their current study. The unique feature of their method is that it makes use of magnetic effects, even if the material being tested is non-magnetic.

The Mainz-based researchers coated a non-magnetic steel with different magnetic films, each 20 nanometers thin and composed of terfenol-D, an alloy of the chemical elements terbium, iron, and dysprosium, or of permalloy, a nickel-iron compound.

The physicists then used a so-called Kerr microscope to check whether strains of the steel can be detected in the microscopic range. "This is achieved using the so-called Kerr effect, which allows the magnetic microstructures, the so-called domains, to be imaged by rotating the polarization direction of light," explained Dr. Marek Smaga.

The scientists examined magnetically coated steel plates a few millimeters thick that had previously been exposed to mechanical stress. "We observed a characteristic change in the magnetic domain structure," explained Dr. Martin Jourdan from the Institute of Physics at JGU. "Microscopic strain in non-magnetic steel causes the direction of magnetization of the thin layer to change."

Compared to conventional testing procedures, this method has the advantage of detecting signs of fatigue much earlier as it is effective at the micrometer level. The researchers' method could be used in new testing techniques in the future. In addition, the technique is not only interesting for non-magnetic steel. Other materials such as aluminum, titanium, and certain composite materials could also be treated with such a layer.

The project was part of the work undertaken by the Transregional Collaborative Research Center (CRC/TRR) "Spin+X: Spin in its collective environment", which is based at TU Kaiserslautern and Johannes Gutenberg University Mainz and financed by the German Research Foundation (DFG). The CRC/TRR involves interdisciplinary teams of researchers from the fields of chemistry, physics, mechanical engineering, and process engineering, who undertake research into magnetic effects that are to be transferred to application. The primary focus is on the phenomenon of the spin. Physicists use this term to refer to the quantum mechanical momentum of a quantum particle, such as an electron or proton. This forms the basis of many magnetic effects.

###

Image:

http://www.uni-mainz.de/bilder_presse/08_physik_werkstoffpruefung_stahl_beschichtungsapparatur.jpg

Dr. Martin Jourdan and Bachelor degree student Moritz Krämer coating non-magnetic steel with various magnetic films, each 20 nanometers thick, using the coating apparatus at JGU's Institute of Physics. photo/©: Martin Jourdan

Publication:

M. Jourdan et al., Strain detection in non-magnetic steel by Kerr-microscopy of magnetic tracer layers, Journal of Magnetism and Magnetic
Materials
465, 143-146, 2018,
DOI:10.1016/j.jmmm.2018.05.081
https://www.sciencedirect.com/science/article/abs/pii/S0304885318306668

Contact:

PD Dr. Martin Jourdan
Institute of Physics
Johannes Gutenberg University Mainz
55099 Mainz, Germany
phone: +49 6131 39-23635
e-mail: jourdan@uni-mainz.de
https://www.klaeui-lab.physik.uni-mainz.de/martin-jourdan/

Dr.-Ing. Marek Smaga

Institute of Materials Science and Engineering
University of Kaiserslautern
67653 Kaiserslautern, Germany
phone: +49 631 205-2762
e-mail: smaga@mv.uni-kl.de
https://www.mv.uni-kl.de/wkk/wkk-lehrstuhl0/wkk-mitarbeiter0/container-schwing/wkk-ma-smaga0/

Related links:

https://www.uni-kl.de/trr173/home/ - Transregional Collaborative Research Center 173 "Spin+X: Spin in its collective environment"

https://www.klaeui-lab.physik.uni-mainz.de/ - Kläui Lab at the JGU Institute of Physics

Read more:

http://www.uni-mainz.de/presse/aktuell/3937_ENG_HTML.php - press release "Antiferromagnets prove their potential for spin-based information technology" (29 Jan. 2018) ;

http://www.uni-mainz.de/presse/18238_ENG_HTML.php - press release "Mainz University opens Spin Phenomena Interdisciplinary Center to accelerate spin research" (22 April 2015)

PD Dr. Martin Jourdan | EurekAlert!
Further information:
http://dx.doi.org/10.1016/j.jmmm.2018.05.081

Further reports about: CRC JGU Magnetic Materials Science Spin coating magnetism micrometer level

More articles from Materials Sciences:

nachricht New approach improving stability and optical properties of perovskite films
14.02.2019 | City University of Hong Kong

nachricht Calculating correlated materials from first principles
14.02.2019 | Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Gravitational waves will settle cosmic conundrum

15.02.2019 | Physics and Astronomy

Spintronics by 'straintronics'

15.02.2019 | Physics and Astronomy

Platinum nanoparticles for selective treatment of liver cancer cells

15.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>