Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CVD Diamond Coating: New innovative process improves the adhesion of diamond to cemented carbide

31.07.2017

To reduce process costs in industrial parts manufacturing while simultaneously improving quality, the use of diamond-coated, cemented carbide cutting tools has increased. Adhesion of diamond coatings was previously problematic, particularly when processing composite or lightweight materials. Suitable pretreatment is therefore vital. Dr. Manuel Mee of the Fraunhofer Institute for Mechanics of Materials IWM has developed a new pretreatment routine that increases the adhesion of CVD diamond to carbide: by combining several approaches into a single process, all factors which affect the adhesion of the coating can be taken into consideration, leading to a fundamental improvement of the adhesion.

Today cemented carbide is the most commonly used material for industrial cutting tools. This is thanks to its combination of tungsten carbide and cobalt. While it is the tungsten carbide that lends this metal its hardness, the toughness that makes it equal to many tasks is provided by the cobalt, which holds the tungsten carbide grains together in the material structure.


Carbide tools can already be pretreated using the new procedure. Indexable insert (top) and milling cutter (bottom).

© Fraunhofer Institute for Mechanics of Materials IWM


The broken edge of a diamond-coated carbide component pretreated with the newly developed procedure, with significantly improved adhesion of the diamond layer.

© Fraunhofer Institute for Mechanics of Materials IWM

Coating the cemented carbide with diamond and thus providing greater hardness is intended to further increase the wear resistance of the tool. 'But this is where the challenge lies, because the cobalt present in the carbide prevents stabilization of the diamond structure during the coating process. Instead, a graphite-like structure of carbon is formed,' says Dr. Manuel Mee, a scientist of the Tribological Coatings group at Fraunhofer IWM.

To prevent the cobalt from interacting with the diamond that is forming or already synthesized, the cobalt phase on the surface of the carbide tool is nowadays removed by means of a wet-chemical process. This type of pretreatment, however, causes the peripheral zone of the carbide to become porous and affects its toughness. The irregular stresses obtained during cutting, particularly when working with inhomogeneous materials such as carbon fiber-reinforced plastics, can result in the breakdown of the now more vulnerable peripheral zone. As a result, the diamond coating flakes off.

Significantly reduced process Duration

'With the new method we can now maintain the stability of the peripheral zone and even slightly increase it', adds Mee. Since he implements every step of the process with a microwave plasma, the process chain need not be interrupted. This eliminates extra work steps and thus valuable time. Another important factor: tools produced by this method can be recycled once they become worn by removing the old coating and applying the process again. This reduces the amount of materials required, which is particularly advantageous in regard to the tungsten used - this is extracted primarily in China and cannot be reliably obtained on the world markets.

Multiple processes combined into one

Apart from the wet-chemical procedure currently used almost exclusively for ensuring the adhesion of diamond to cemented carbide, other methods of surface treatment are possible - and Dr. Mee has bundled these into an integrated process for the functionalization of the tool material. 'By combining different process approaches I have been able to make use of the advantages of each of the factors influencing adhesion while also being able to compensate for their individual disadvantages', he explains. First the carbon is removed from the surface of the carbide at high temperature, which results in the formation of what is known as the eta phase.

Re-enrichment with carbon then leads to a large proportion of the unwanted cobalt in the peripheral zone being vaporized. At the same time, however, the surface structure, hardness and fracture toughness are positively influenced. The process can be controlled in such a way that the eta phase previously created remains in the grain boundaries beneath the surface, and can then be used in the following treatment step to cause a conversion to cobalt tungstate. This has proven itself capable of stabilizing the cobalt and inhibiting its subsequent diffusion. This process step does not, however, prevent a wetting of the surface by a very thin cobalt film. Mee has therefore added a further step to the procedure in which a silicon-based interlayer is added that finally keeps the cobalt away from the diamond layer.

The procedure, which is funded by the 'DiaWerk' project of the Baden-Württemberg Stiftung gGmbH foundation, is meanwhile patent pending and has been described in detail by Mee in his dissertation on microwave plasma-assisted process development for the manufacture of functionally graded hardmetals for CVD diamond coating. For this dissertation Dr. Manuel Mee has been awarded the 2017 Mechanics of Materials Award with its endowment of €3000 by the automotive supplier KSPG AG. This award is given annually by the prize committee of the board of trustees of Fraunhofer IWM to young researchers for outstanding scientific achievement in the field of materials mechanics.

Scientific contact:
Dr. Manuel Mee
Tribological Coatings
Fraunhofer Institute for Mechanics of Materials IWM
Phone +49 761 5142-490
manuel.mee@iwm.fraunhofer.de

Weitere Informationen:

http://www.iwm.fraunhofer.de/en/press/press-releases/31_07_2017_processimprovesa... - Website Fraunhofer IWM
http://www.iwm.fraunhofer.de/en/services/tribology/tribological-coatings.html - Tribological Coatings

Katharina Hien | Fraunhofer-Institut für Werkstoffmechanik IWM

More articles from Materials Sciences:

nachricht Research finds new molecular structures in boron-based nanoclusters
13.07.2018 | Brown University

nachricht 3D-Printing: Support structures to prevent vibrations in post-processing of thin-walled parts
12.07.2018 | Fraunhofer-Institut für Produktionstechnologie IPT

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

New players, standardization and digitalization for more rail freight transport

16.07.2018 | Transportation and Logistics

Researchers discover natural product that could lead to new class of commercial herbicide

16.07.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>