Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Custom-Built Infrared Emitters for Printed Electronic Components

02.08.2013
Intelligent Solutions for Drying and Sintering Processes

Printed electronic components and printed features of electronic products are very much on the increase, providing RFID (radio frequency identification), as integral features of telephone- and credit cards (smart cards), providing protection against copying or as security features in identity cards and passes.


One custom-built infrared system can carry out several different drying and sintering processes. Copyright Heraeus Noblelight GmbH, Hanau 2013

To produce such printed electronic components, organic or metallized inks are applied to plastic foils, paper or glass. By curing, drying and sintering, the required conductive properties are achieved and at the same time the coating is firmly joined to the base material.

A newly developed infrared system, including an intelligent control unit, meets all important requirements, and this new module was shown for the first time at the LOPE-C exhibition which took place in June.

All conventional printing processes, such as screen printing, inkjet, gravure and Flexo, can be used to produce printed electronic components. The inks used are organic or metallized inks and these can be used with many materials such as paper, plastic foil or glass. Curing, drying and sintering are processes necessary to obtain the required conductivity or the semi-conducting or dielectric properties. These processes can be carried out by UV emitters, LEDs, flash lamps, hot air ovens or infrared systems.

According to which type of ink and base material is used, and which type of printing is employed (sheet-fed or offset), the manufacturer must generally replace the curing/drying/sintering source module, or install several different modules.

An innovative infrared system, including an intelligent control unit, can minimize this time wasting effort as several different drying and sintering processes can be carried with the aid of a single, custom-built infrared system. This new infrared solution is available in two versions, to allow an individual matching of the system with the ink, material, printing process and feed speed.

Version 1 employs an infrared module which is fitted with only one type of emitter. Here the requirements for the different applications are realized by means of an intelligent control unit.

Version 2 features a single infrared module fitted with various types of emitter matched to the heating zones of several drying and sintering zones. Both versions provide controllable infrared power density in the range 20 to 220kW/m2. Emitter filament temperatures are from 1,200 to 3,000°C, so that the infrared spectrum can be optimally matched with the reflection and absorption characteristics of the inks and the substrates. The optimum distance between emitter and product is also important. With tests feed speeds of up to 60 meters per minute have been be achieved.

With both infrared system versions it is no longer necessary to change the emitter, module or other components when changing over between different processes. This significantly raises a system’s productivity.

Infrared Systems Offer Significant Advantages in Printing Electronic Products.
Infrared emitters transfer energy in a contact-free manner and generate energy only in the product to be heated. They can be excellently matched with different functional materials and substrates in terms of wavelength, power and shape. Very fast response times minimize material damage in the event of unexpected feed belt stoppage or breakage.
Modern numerical methods such as Ray tracing and Computational Fluid Dynamics (CFD) are used to ensure that heating is as homogenous as possible. The energy distribution over the material surface can be optimized, for example, by carrying out simulations prior to installation. Sophisticated reflector technology also helps to ensure that the energy is applied in the best way possible.

Heraeus, the precious metals and technology group headquartered in Hanau, Germany, is a global, private company with more than 160 years of tradition. Our fields of competence include precious metals, materials and technologies, sensors, biomaterials and medical products, quartz glass, and specialty light sources. In the financial year 2012 Heraeus generated product revenues of €4.2 billion and precious metal trading revenues of €16 billion. With more than 12,200 employees in over 100 subsidiaries worldwide, Heraeus holds a leading position in its global markets.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China and Australia, is one of the technology- and market-leaders in the production of specialist light sources. In 2012, Heraeus Noblelight had an annual turnover of 92,5 Million € and employed 715 people worldwide. The organization develops, manufactures and markets infrared and ultraviolet emitters and systems for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical measurement techniques.

Heraeus Noblelight acquired on January 31, 2013 the Fusion UV Systems group headquartered in Gaithersburg, Maryland (USA).

For further information contact:

Reader:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Tel +49 6181/35-8545, Fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Press:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
Tel +49 6181/35-8547, Fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.com/infrared

More articles from Materials Sciences:

nachricht Research finds new molecular structures in boron-based nanoclusters
13.07.2018 | Brown University

nachricht 3D-Printing: Support structures to prevent vibrations in post-processing of thin-walled parts
12.07.2018 | Fraunhofer-Institut für Produktionstechnologie IPT

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>