Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Creation of Database for Promising Adsorbents for Decontamination of Radioactive Substances from Nuclear Power Plants

13.01.2012
NIMS is collecting basic data on natural minerals produced in various regions and inorganic materials with different chemical compositions as a tool for selecting suitable materials, and will make this information available in a NIMS Materials database (MatNavi).

The search for more effective methods of decontamination of radioactive substances discharged from the Fukushima Daiichi Nuclear Power Plant following the Tohoku Earthquake and Tsunami of March 11, 2011 is an urgent issue. At present, use of natural minerals, beginning with zeolite, as adsorbents is under study as the most promising approach.

In reality, even natural minerals having the same group name possess different adsorption capacities, depending on the chemical composition and original region where the substance was produced. Performance also varies greatly depending on use conditions, such as the concentration of radioactive substances, acidity of the use environment, and the like. In other words, because the most effective adsorbent will vary depending on the use environment, it is necessary to select the optimum adsorbent for the conditions at each site. However, comprehensive data showing the adsorption capacities of the large number of promising materials did not exist anywhere in the world, highlighting the urgent need to create a database for use when selecting adsorbents.

The National Institute for Materials Science (NIMS) is collecting basic data on natural minerals produced in various regions and inorganic materials with different chemical compositions as a tool for selecting suitable materials, and will make this information available in a NIMS Materials database (MatNavi). The objects are adsorbents for cesium, strontium, and iodine. For the adsorbents under study, NIMS has collected nearly 800 basic data items for 60 species of materials from various localities and with various chemical compositions.

Contamination resulting from the release of radioactive substances affects a wide range of environments. The assumed objects range from contaminated water including seawater which was used to tool the reactor core and is accumulating at the power plant site, contaminated soil in the immediate vicinity of the plant and in the larger region around the plant (rice paddies, fields, orchards, etc.), woods and forests, water, buildings, roadways, and others. The distribution of contaminated water is also extremely diverse, encompassing seawater, river water, ponds and lakes, pools, agricultural water, etc. Because it is necessary to remove radioactive substances from this diverse range of sites, NIMS is performing experiments and collecting data on many types of adsorbents under a wide variety of conditions.

Database construction is being carried out by a total of 7 universities, 4 Independent Administrative Institutions (IAIs), and 1 foundation under Dr. Hirohisa Yamada, Group Leader of the Functional Geomaterials Group, National Institute for Materials Science. In addition to NIMS, the participating organizations are Hokkaido University, Iwate University, Tokyo Institute of Technology, Shimane University, the University of Miyazaki, Tokyo Metropolitan University, Kanazawa Institute of Technology, the Japan International Research Center for Agricultural Sciences (JIRCAS), the National Institute of Advanced Industrial Science and Technology (AIST), the Japan Atomic Energy Agency (JAEA), and the Central Research Institute of the Electric Power Industry (CRIEPI). These research teams are also key members of the Clay Science Society of Japan.

This research and development project is being implemented mainly with support from the FY2011 Strategic Funds for Promotion of Science and Technology, “Establishment of the Base for Taking Measures for Environmental Impact of Radioactive Substances” of the Ministry of Education, Culture, Sports, Science and Technology (MEXT).

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Synthesis of helical ladder polymers
21.05.2019 | Kanazawa University

nachricht Ultra-thin superlattices from gold nanoparticles for nanophotonics
21.05.2019 | Heinrich-Heine University Duesseldorf

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Summit charts a course to uncover the origins of genetic diseases

22.05.2019 | Life Sciences

New study finds distinct microbes living next to corals

22.05.2019 | Life Sciences

Stellar waltz with dramatic ending

22.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>