Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Creation of Database for Promising Adsorbents for Decontamination of Radioactive Substances from Nuclear Power Plants

13.01.2012
NIMS is collecting basic data on natural minerals produced in various regions and inorganic materials with different chemical compositions as a tool for selecting suitable materials, and will make this information available in a NIMS Materials database (MatNavi).

The search for more effective methods of decontamination of radioactive substances discharged from the Fukushima Daiichi Nuclear Power Plant following the Tohoku Earthquake and Tsunami of March 11, 2011 is an urgent issue. At present, use of natural minerals, beginning with zeolite, as adsorbents is under study as the most promising approach.

In reality, even natural minerals having the same group name possess different adsorption capacities, depending on the chemical composition and original region where the substance was produced. Performance also varies greatly depending on use conditions, such as the concentration of radioactive substances, acidity of the use environment, and the like. In other words, because the most effective adsorbent will vary depending on the use environment, it is necessary to select the optimum adsorbent for the conditions at each site. However, comprehensive data showing the adsorption capacities of the large number of promising materials did not exist anywhere in the world, highlighting the urgent need to create a database for use when selecting adsorbents.

The National Institute for Materials Science (NIMS) is collecting basic data on natural minerals produced in various regions and inorganic materials with different chemical compositions as a tool for selecting suitable materials, and will make this information available in a NIMS Materials database (MatNavi). The objects are adsorbents for cesium, strontium, and iodine. For the adsorbents under study, NIMS has collected nearly 800 basic data items for 60 species of materials from various localities and with various chemical compositions.

Contamination resulting from the release of radioactive substances affects a wide range of environments. The assumed objects range from contaminated water including seawater which was used to tool the reactor core and is accumulating at the power plant site, contaminated soil in the immediate vicinity of the plant and in the larger region around the plant (rice paddies, fields, orchards, etc.), woods and forests, water, buildings, roadways, and others. The distribution of contaminated water is also extremely diverse, encompassing seawater, river water, ponds and lakes, pools, agricultural water, etc. Because it is necessary to remove radioactive substances from this diverse range of sites, NIMS is performing experiments and collecting data on many types of adsorbents under a wide variety of conditions.

Database construction is being carried out by a total of 7 universities, 4 Independent Administrative Institutions (IAIs), and 1 foundation under Dr. Hirohisa Yamada, Group Leader of the Functional Geomaterials Group, National Institute for Materials Science. In addition to NIMS, the participating organizations are Hokkaido University, Iwate University, Tokyo Institute of Technology, Shimane University, the University of Miyazaki, Tokyo Metropolitan University, Kanazawa Institute of Technology, the Japan International Research Center for Agricultural Sciences (JIRCAS), the National Institute of Advanced Industrial Science and Technology (AIST), the Japan Atomic Energy Agency (JAEA), and the Central Research Institute of the Electric Power Industry (CRIEPI). These research teams are also key members of the Clay Science Society of Japan.

This research and development project is being implemented mainly with support from the FY2011 Strategic Funds for Promotion of Science and Technology, “Establishment of the Base for Taking Measures for Environmental Impact of Radioactive Substances” of the Ministry of Education, Culture, Sports, Science and Technology (MEXT).

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/
http://www.researchsea.com

More articles from Materials Sciences:

nachricht A new paradigm of material identification based on graph theory
17.06.2019 | Science China Press

nachricht Electron beam strengthens recyclable nanocomposite
17.06.2019 | Kanazawa University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Uncovering hidden protein structures

18.06.2019 | Life Sciences

Monitoring biodiversity with sound: how machines can enrich our knowledge

18.06.2019 | Life Sciences

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>