Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Creating new advanced R&D tools that can build molecule-sized computer chips

29.06.2011
The Institute of Materials Research and Engineering (IMRE), a research institute of Singapore’s Agency for Science, Technology and Research (A*STAR), hosts the first AtMol workshop for the world’s experts in the advanced tools needed to build a molecule-sized chip.

The Institute of Materials Research and Engineering (IMRE), a research institute of Singapore’s Agency for Science, Technology and Research (A*STAR), hosts the first AtMol workshop for the world’s experts in the advanced tools needed to build a molecule-sized chip. IMRE is the perfect venue as it houses one of the few R&D tools in the world that is powerful enough to study single molecule logic gates and surface atom circuit logic gates, which are essential in building the chip.

Tools that are able to build computer chips 1000 times smaller than a grain of sand. That’s what experts from around the world will be talking about when they gather at A*STAR’s IMRE for a workshop on atomic scale interconnection machines. The tools are vital to the European Union’s €10 million Atomic Scale and Single Molecule Logic Gate Technologies, or AtMol project in which IMRE is the only non-EU partner. The project lays the foundation for creating and testing a molecule-sized processor chip.

These tools physically move atoms into place one at a time to construct atomic scale circuits at cryogenic temperatures and are also able to interconnect the tiny circuits to the external environment. The machines are essentially miniature high precision scanning tunnelling microscopes that can image a surface with picometer precision and manipulate one atom or molecule at a time. They are coupled to a high-resolution electron microscope that allows a researcher to position interconnects to make an atomic scale circuit. This method is a leading alternative in the race to achieve continued miniaturisation of nanoelectronic devices. It is estimated that conventional methods for shrinking devices will reach their miniaturisation limit in 10-15 years and cannot be reduced further. Speakers from Europe, USA, Japan, Canada, Australia and Singapore will discuss advancements in such ultra-high vacuum (UHV) tools and plans for the next generation tools.

“Because we are working at the scale of the atom, our tools have to be ultra high-precision and of extremely high-calibre, just like IMRE’s UHV interconnection machine, which is one of the three in AtMol that can study the performance of single molecule and surface atom circuit logic gates”, said the AtMol project leader, Prof Christian Joachim of the French Centre National de la Recherche Scientifique (CNRS) and an A*STAR Visiting Investigator at IMRE. Prof Joachim’s team in IMRE is one of the pioneers in atom technology, having built the world’s first controllable molecular gear and constructed the smallest digital logic gate with a single molecule. “This workshop brings together the world’s foremost experts to discuss the latest in atomic interconnection machine technology and how this can quicken the pace towards a working molecular chip.”

“The tools and the level of expertise that IMRE is contributing to this project show that the research in Singapore is truly at the cutting edge of global science”, said Prof Andy Hor, Executive Director of IMRE. “IMRE is extremely glad to host the event and be a part of a truly momentous scientific effort.”

The AtMol project aims to create a prototype molecular processor or a ‘concept chip’ in about four years time. The project will establish a comprehensive process for making the molecular chip using the three unique ultra high vacuum (UHV) atomic scale interconnection machines to build the chip atom-by-atom. The AtMol project was launched at the start of 2011 with 10 organisations from across Europe and IMRE in Singapore.

For media enquiries, please contact:
Mr Eugene Low
Manager, Corporate Communications
for Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID +65 6874 8491
Mobile +65 9230 9235
Email loweom@scei.a-star.edu.sg
For technical enquiries, please contact:
Prof Christian Joachim
Visiting Research Scientist
Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID: +65 6874 8344
Email c-joachim@imre.a-star.edu.sg, joachim@cemes.fr
About the Institute of Materials Research and Engineering (IMRE)
The Institute of Materials Research and Engineering (IMRE) is a research institute of the Agency for Science, Technology and Research (A*STAR). The Institute has capabilities in materials analysis & characterisation, design & growth, patterning & fabrication, and synthesis & integration. We house a range of state-of-the-art equipment for materials research including development, processing and characterisation. IMRE conducts a wide range of research, which includes novel materials for organic solar cells, photovoltaics, printed electronics, catalysis, bio-mimetics, microfluidics, quantum dots, heterostructures, sustainable materials, atom technology, etc. We collaborate actively with other research institutes, universities, public bodies, and a wide spectrum of industrial companies, both globally and locally.

For more information about IMRE, please visit www.imre.a-star.edu.sg

About the Agency for Science, Technology and Research (A*STAR)
The Agency for Science, Technology and Research (A*STAR) is the lead agency for fostering world-class scientific research and talent for a vibrant knowledge-based and innovation-driven Singapore. A*STAR oversees 14 biomedical sciences and physical sciences and engineering research institutes, and six consortia & centres, located in Biopolis and Fusionopolis as well as their immediate vicinity.

A*STAR supports Singapore's key economic clusters by providing intellectual, human and industrial capital to its partners in industry. It also supports extramural research in the universities, hospitals, research centres, and with other local and international partners.

For more information about A*STAR, please visit www.a-star.edu.sg.

About the AtMol project
AtMol will establish comprehensive process flow for fabricating a molecular chip, i.e. a molecular processing unit comprising a single molecule connected to external mesoscopic electrodes with atomic scale precision and preserving the integrity of the gates down to the atomic level after the encapsulation. Logic functions will be incorporated in a single molecule gate, or performed by a single surface atomic scale circuit, via either a quantum Hamiltonian or a semi-classical design approach. AtMol will explore and demonstrate how the combination of classical and quantum information inside the same atomic scale circuit increases the computing power of the final logic circuit. Atomic scale logic gates will be constructed using atom-by-atom manipulation, on-surface chemistry, and unique UHV transfer printing technology.

For more information about AtMol, please visit www.atmol.eu

Eugene Low | Research asia research news
Further information:
http://www.a-star.edu.sg/?TabId=828&articleType=ArticleView&articleId=1495
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern
20.07.2018 | Princeton University

nachricht Relax, just break it
20.07.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>