Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Copper ions flow like liquid through crystalline structures

09.10.2018

Atomic insights into superionic crystals could lead to safer, more efficient rechargeable batteries

Materials scientists have sussed out the physical phenomenon underlying the promising electrical properties of a class of materials called superionic crystals. A better understanding of such materials could lead to safer and more efficient rechargeable batteries than the current standard-bearer of lithium ion.


An artistic rendition of the intriguing superionic crystalline structure of CuCrSe2, which has copper ions that move like liquid between solid layers of chromium and selenium, giving rise to useful electrical properties.

Credit: Oak Ridge National Laboratory/Jill Hemman

Becoming a popular topic of study only within the past five years, superionic crystals are a cross between a liquid and a solid. While some of their molecular components retain a rigid crystalline structure, others become liquid-like above a certain temperature, and are able to flow through the solid scaffold.

In a new study, scientists from Duke University, Oak Ridge National Laboratory (ORNL) and Argonne National Laboratory (ANL) probed one such superionic crystal containing copper, chromium and selenium (CuCrSe2) with neutrons and X-rays to determine how the material's copper ions achieve their liquid-like properties. The results appear online on Oct. 8 in the journal Nature Physics.

"When CuCrSe2 is heated above 190 degrees Fahrenheit, its copper ions fly around inside the layers of chromium and selenium about as fast as liquid water molecules move," said Olivier Delaire, associate professor of mechanical engineering and materials science at Duke and senior author on the study. "And yet, it's still a solid that you could hold in your hand. We wanted to understand the molecular physics behind this phenomenon."

To probe the copper ions' behavior, Delaire and his colleagues turned to two world-class facilities: the Spallation Neutron Source at Oak Ridge and the Advanced Photon Source at Argonne. Each machine provided a unique piece of the puzzle.

By pinging a large sample of powdered CuCrSe2 made at Oak Ridge with powerful neutrons, the researchers got a wide-scale view of the material's atomic structure and dynamics, revealing both the vibrations of the stiff scaffold of chromium and selenium atoms as well as the random jumps of copper ions within.

For a narrower but more detailed look at vibration modes, the researchers bombarded a tiny single grain of CuCrSe2 crystal with high-resolution X-rays. This allowed them to examine how the rays scattered off of its atoms and how scaffold vibrations enabled shear waves to propagate, a hallmark of solid behavior.

With both sets of information in hand, Delaire's group ran quantum simulations of the material's atomic behavior at the National Energy Research Scientific Computing Center to explain their findings. Below the phase transition temperature of 190 degrees Fahrenheit, the copper atoms vibrate around isolated sites, trapped in pockets of the material's scaffold structure. But above that temperature, they are able to hop randomly between multiple available sites. This allows the copper ions to flow throughout the otherwise solid crystal.

While more work is needed to understand how the copper atoms interact with one another once both sites become occupied, the findings offer clues as to how to use similar materials in future electronic applications.

"Most commercial lithium ion batteries use a liquid electrolyte to transfer ions between the positive and negative terminals of the battery," Delaire said. "While efficient, this liquid can be dangerously flammable, as many laptop and smartphone owners have unfortunately discovered."

"There are variants of superionic crystals that contain ions like lithium or sodium that behave like the copper in CuCrSe2," Delaire said. "If we can understand how superionic crystals work through this study and future research, we could perhaps find a better, solid solution for transporting ions in rechargeable batteries."

###

This research was supported by the Department of Energy (DE-SC0016166, DE-SC0001299, DE-AC02-06CH11357, DE-AC02-05CH11231, DEAC05-00OR22725).

CITATION: "Selective Breakdown of Phonon Quasiparticles across Superionic Transition in CuCrSe2." J. L. Niedziela, Dipanshu Bansal, Andrew F. May, Jingxuan Ding, Tyson Lanigan-Atkins, Georg Ehlers, Douglas L. Abernathy, Ayman Said, & Olivier Delaire. Nature Physics, 2018. DOI: 10.1038/s41567-018-0298-2

Media Contact

Ken Kingery
KEN.KINGERY@DUKE.EDU
919-660-8414

 @DukeU

http://www.duke.edu 

Ken Kingery | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41567-018-0298-2

More articles from Materials Sciences:

nachricht Carbon fiber can store energy in the body of a vehicle
18.10.2018 | Chalmers University of Technology

nachricht Goodbye, silicon? On the way to new electronic materials with metal-organic networks
17.10.2018 | Max-Planck-Institut für Polymerforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>