Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Controlling the uncontrollable

18.08.2015

Researchers harness unstable responses to build new soft actuators

Instability in engineering is generally not a good thing. If you're building a skyscraper, minor instabilities could bring the whole structure crashing down in a fraction of a second. But what if a quick change in shape is exactly what you want?


These soft actuators harnessed the power of snap-through instabilities to trigger large outputs with small inputs of fluid.

Credit: Johannes Overvelde/The Bertoldi Lab

Soft machines and robots are becoming more and more functional, capable of moving, jumping, gripping an object, and even changing color. The elements responsible for their actuation motion are often soft, inflatable segments called fluidic actuators. These actuators require large amounts of air or water to change shape, making the machines slow, bulky and difficult to untether.

A team of researchers at the Harvard John A. Paulson School of Engineering and Applied Science (SEAS) has engineered a new, soft actuator that harnesses the power of instability to trigger instantaneous movement.

The research was led by Katia Bertoldi, the John L. Loeb Associate Professor of the Natural Sciences, member of the Kavli Institute for Bionano Science and Technology, and faculty associate of the Materials Research Science and Engineering Center. The work is described in a paper in the Proceedings of the National Academy of Sciences.

The actuator is inspired by a famous physics experiment in which two balloons are inflated to different sizes and connected via a tube and valve. When the valve is opened, air flows between the balloons. Instead of equalizing in size, as one might expect, the larger balloon inflates more while the smaller balloon deflates.

This unexpected behavior comes from the balloons' non-linear relationship between pressure and volume, meaning the an increase in volume doesn't necessarily increase the pressure.

"When inflating a balloon, the first few blows are the hardest but after reaching a critical pressure it becomes easier," said Johannes Overvelde, PhD student at SEAS and first author on the paper. "Similar to the balloons, in our research we connect fluidic segments in such a way that an interplay between their non-linear response results in unexpected behavior. Certain combinations of these interconnected segments can result in fast moving instabilities with negligible change in volume."

These fast-moving instabilities, called snap-through instabilities, trigger large changes in internal pressure, extension, shape, and exerted force, with only small changes in volume. If harnessed, these instabilities would allow soft robots to move quickly without needing to carry or be tethered to a fluid supply.

But first Bertoldi's team had to find a way to control something that, by definition, is uncontrollable.

The team started by building and inflating 36 individual segments with water, and measuring how they responded. Then, using a complex computer algorithm, they determined the responses of all possible combinations of the segments.

A total of 630 possible actuators could be assembled from two segments, each with a different combined response. Some of the combinations showed instabilities, others did not. The team selected the preferred response for a specific application. One combination, for example, would lead to a sudden increase in actuator length, moving it like a worm. Another combination would quickly transfer all volume from one segment to another.

These quick movements could be triggered with small amounts of volume. For example, 1 ml. of water triggered a snap-through instability that resulted in an internal volume flow of 20 ml.

"The beauty of these individual segments is that they are easy and cheap to fabricate from off-the-shelve materials. Yet, when you connect segments you get soft actuators with very complex behavior," said Overvelde. "By connecting multiple segments, you can embed a simple program in the actuator that is able to perform a complex sequence of local inflation and deflation."

The next step is to test these instabilities in soft robotics.

"Engineers have long avoided instability because it so often represents failure," said Bertoldi. "It's remarkable that instability itself has provided a way to improve and push the field of soft actuators forward."

###

This research was co-authored by Tamara Kloek and Jonas D'haen. It was supported by the Materials Research Science and Engineering Center and the National Science Foundation.

Leah Burrows | EurekAlert!

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>