Concentrated Competencies for Non-Metals

The new Department of Technologies for Non-Metals at the Laser Zentrum Hannover e.V. (LZH) focuses on the thematic fields of glass, photovoltaics and composite materials. From basic research projects to making prototypes, this department concentrates on specific process chain solutions for industrial manufacturing.

Whether in glass processing, for the manufacturing of solar collectors, or for processing fiber-reinforced plastics, in comparison to conventional methods, the use of lasers can significantly increase quality and productivity, or even make completely new processing methods possible. For example, controlled energy input can avoid damage from thermal effects in glass components. Composites also place complex requirements on processing, due to the special characteristics of the carbon fibers.

Material damage and high wear rates for tooling composite materials can be significantly reduced using laser technology instead of the classical material removal methods. And in the field of photovoltaics, significantly higher effectivity rates for solar cells can be achieved by using selective doping, for example, which is impossible without laser technology.

By creating a new department for non-metals, the LZH would like to make a substantial contribution to innovative developments in the fields of energy generation and resource conservation. The main goals of this department include not only precise micro-machining, but also highly productive throughput optimization of large areas. The tool “laser” must be optimized in order to structure, cut, form or weld the different non-metal materials, and the laser must be integrated into complex production and manufacturing processes.

Dr. Uwe Stute is head of the new department. He has returned to the LZH after three years in industrial as a branch manager for photovoltaics. Before he started working for the firm Trumpf Laser, he was head of the Department of Production and System Technology at the LZH, from 2004 to 2008. He is excited about his return to the Hannoverian research center. “I think it is extremely interesting”, he says, “to be able to work on laser processes in areas which are presently undergoing major developments. Laser technology has an enormous potential in this field.”

Stute, who has a doctor's degree in physics, states that the most important current research goals of his department are to optimize glass-metal/glass-glass welding for the production of solar collectors, open new production possibilities in the field of photovoltaics using “cold” laser processing, and automating laser tooling of composite materials.

Contact:
Laser Zentrum Hannover e.V.
Michael Botts
Hollerithallee 8
D-30419 Hannover
Germany
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
E-Mail: m.botts@lzh.de
http://www.lzh.de
The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

You can find the LZH press releases with a WORD-download and when possible illustrations at www.lzh.de under “publications/press releases”

Media Contact

Michael Botts Laser Zentrum Hannover e.V.

More Information:

http://www.lzh.de

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors