Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Components based on nature's example

06.10.2011
The exceptional strength of certain biological materials is due principally to their complex structure.

Long bones, for instance, consist of a compact, solid outer casing filled with spongy tissue, which makes them particularly strong and resilient. Researchers from the Fraunhofer Institutes for Mechanics of Materials IWM and for Environmental, Safety and Energy Technology UMSICHT are collaborating on a project entitled "Bionic Manufacturing", which aims to develop products that are lightweight but strong and economic in their use of materials – imitating the perfected structures found in nature.


The picture on the left shows a lightweight structure made of polyamide inspired by bionic principles. The picture on the right shows its detailed simulation on the computer. Credit: Fraunhofer IWM

The IWM scientists in Freiburg have taken on the task of identifying the best internal structures for manufactured components. "We have set ourselves the challenge of working as efficiently as nature: The finished component must not weigh more than necessary and yet still be able to perform its mechanical function reliably," explains Dr. Raimund Jaeger of IWM. This approach can be combined with a high degree of creative freedom: "Such components can be used to produce consumer goods with a high aesthetic value, such as designer chairs," adds Jaeger. And if by chance one of these bionically designed objects should break as the result of excessive loading, it will do so in a benign way – collapsing smoothly in localized areas rather than shattering into sharp splinters.

Whereas natural materials have evolved over numerous generations to reach the level of perfection we see today, engineers and product designers have to work much faster. The Freiburg research team has therefore developed a new design method. They start by constructing a virtual model of the future workpiece on the computer, filling out its contours with almost identical, cube-shaped, elementary cells. If the numerical simulation reveals that the grid structure does not satisfy requirements, the cell walls (trabecular microstructure) are refined accordingly. "We make them thicker if they are too weak and thinner if they need to be more pliable, or align them with the force lines along which the load is distributed," explains Jaeger. This method enables many different shapes to be designed around an inner cell structure that can then be evaluated and optimized using the simulation tool. To complement the simulations, the researchers carry out tests on real-life components to verify the structure's mechanical properties.

Jaeger reports that the method has worked very well every time they have used it to design any type of workpiece based on two-dimensional templates that can be pulled into the desired shape using the computer simulation. The same applies to components with a relatively regular shape. Despite their light weight, all of these components are very strong and resilient and capable of absorbing even substantial shocks. According to the scientists, they have potential applications wherever there is a need for products that combine a high level of mechanical stability and aesthetic appearance with low weight – for example medical orthopedic devices or anatomically formed body protectors such as lumbar support belts for skiers.

Fraunhofer UMSICHT is responsible for the technical implementation of the bionic design principles. The solution chosen by the project managers in Oberhausen involves the use of additive manufacturing techniques – in this case selective laser sintering of polymer materials. This technique enables workpieces to be fabricated by laying down successive layers of a fine polyamide powder, which are fused together in the desired configuration using a focused laser beam. It is the ideal method for creating complex internal structures and, at a later stage, components with a distributed pattern of material properties, which experts refer to as functionally graded materials. The resulting structures are similar to those observed in nature.

Raimund Jaeger | EurekAlert!
Further information:
http://www.iwm.fraunhofer.de

More articles from Materials Sciences:

nachricht Modified 'white graphene' for eco-friendly energy
23.04.2019 | Tomsk Polytechnic University

nachricht New method inverts the self-assembly of liquid crystals
15.04.2019 | University of Luxembourg

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Control 2019: Fraunhofer IPT presents high-speed microscope with intuitive gesture control

24.04.2019 | Trade Fair News

Marine Skin dives deeper for better monitoring

23.04.2019 | Information Technology

Geomagnetic jerks finally reproduced and explained

23.04.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>