Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Completely miscible nanocomposites – A breakthrough on its way to new types of functional materials

29.06.2011
In science and industry polymer nanocomposites are increasingly regarded as materials that will significantly help to define progress in the 21st century.

They consist of a polymer matrix and of nanoparticles which are inserted into the matrix as filler materials. A research group led by Professor Stephan Förster of the University of Bayreuth has now developed a process which opens an avenue for the production of new, completely miscible nanocomposites. These materials represent an extremely varied potential for technological innovations. The scientists discuss their trail blazing development in the publication "Angewandte Chemie International Edition".


Iron containing nanoparticles within a polymer matrix, as photographed with a raster electron microscope (SEM). The nanoparticles are prevented from aggregating with the aid of a polymer surface coating. The length of the polymer chains used for the surface coating determines the distance between the individual nanoparticles within the polymer system. Therefore, the distances can be regulated with a high degree of accuracy. PS 3.3k refers to polystyrol (a polymer system) with a molecular weight of 3300 g/mol, PS 7.6k refers to polystyrol with a molecular weight of 7600 g/mol. Images: Stephan Förster, Department of Physical Chemistry I, University of Bayreuth; free for publication

Nanoparticles are minute particles having a diameter of less than 100 nanometers. They can be incorporated into polymer systems as filler materials. Unfortunately they have the tendency to aggregate within the polymer matrix. As such, they are not distributed as individual particles in all segments of the matrix, but rather form deposits in a limited number of locations in the matrix. The underlying cause for this behavior is that the nanoparticles need to exert significantly less interfacial energy in the aggregated condition, than if they existed in the polymer system individually.

However, for industrial applications, nanocomposites are much more attractive if the individual nanoparticles are distributed separately in the polymer system. In this case, the new materials are characterized by significantly better transparency, whereas aggregated nanoparticles cause them to be dull and opaque. Additionally, the electrical and thermal conductivity of the materials are more pronounced, the more uniformly the nanoparticles are distributed in the polymer system. Finally, the resulting materials are then also more heat and fire resistant.

But how can the aggregation of the nanoparticles in the polymer system be prevented? In an effort to solve this problem, Professor Stephan Förster, in cooperation with scientists of the University of Hamburg, has developed a new research idea which he has already implemented successfully at laboratory scale. The process begins with polymer chains. An adhesion molecule is attached to each chain. Just as with a grappling hook, the polymer chain attaches itself to a nanoparticle with the aid of this molecule; it does so in such a way that one end rests on the surface nearly vertically, whereas its other end points outwards. Using this method, each nanoparticle obtains a complete surface coating consisting of polymer chains, giving the coating the appearance of a spherical brush. These polymer chains, pointing outwards just as bristles do, prevent the nanoparticles from coming too close to each other as they are introduced into the polymer matrix. They are preserved as individual particles whereas the polymer chains are processed into the polymer system.

This opens the door for producing highly advanced functional materials, in which separate nanoparticles are incorporated into all sections of the polymer system. The characteristics and behaviors of these types of nanocomposites are largely dependent on the distance between neighboring nanoparticles. These distances can be regulated with great accuracy during production. The chemical composition of the nanoparticles can also vary, which has a profound impact on the resulting material. Consequently, this new process enables the targeted development of polymer nanocomposites which, based on their interior composition, exhibit specific characteristics and behaviors.

Semiconductor nanoparticles, e.g. those containing cadmium compounds, are of particular interest. If it were possible to comprehensively distribute these on an industrial scale into a polymer matrix, new perspectives would open up for the energy technology field. It so happens that nanocomposites of this type are likely to be suitable for the design of high performance solar cells, which are capable of converting a large portion of the stored light energy into electrical power. Also, apparently attractive are research activities on iron containing nanoparticles, which are incorporated into the polymer matrix at high densities. This would potentially result in very large capacities for magnetic storage of information in very dense spaces.

"In the coming years we intend to produce a broad spectrum of nanocomposites at laboratory scale and evaluate these for their application potential", declares Professor Stephan Förster. "I find it highly likely that this surface coating process will allow us to develop innovative functional materials which will surprise us with their exceptional performance characteristics."

Publication:

Steffen Fischer, Andrea Salcher, Andreas Kornowski, Horst Weller, and Stephan Förster,
Completely Miscible Nanocomposites,
in: Angewandte Chemie, International Edition, 2011, Volume 50,
Article first published online: June 3, 2011.
DOI-Bookmark: 10.1002/anie.201006746
The paper was chosen by the Editors as a "Hot Paper", due to its importance in a rapidly evolving field of high current interest.

Contact for further information:

Prof. Dr. Stephan Förster
Department of Physical Chemistry I
University of Bayreuth
D-95440 Bayreuth
Tel: +49 (0)921 / 55-2760
E-Mail (Sekr.): elisabeth.duengfelder@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Further information:
http://www.uni-bayreuth.de

More articles from Materials Sciences:

nachricht Breakthrough in nanoresearch - Quantum chains in graphene nanoribbons
09.08.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht UNH Researchers find seed coats could lead to strong, tough, yet flexible materials
08.08.2018 | University of New Hampshire

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>