Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combining the elements palladium and ruthenium for industry

22.09.2016

Fabricating palladium-ruthenium nanoparticles could lead to improved industrial processes.

The chemical elements palladium (Pd) and ruthenium (Ru) are both used separately in the chemical industry. For a long time, researchers have thought that combining the two could lead to improved and novel properties for industrial applications. However, the two elements do not readily mix together to become a single material.


Figure: Synthesis of structure controlled bimetallic Pd-Ru nanoparticle alloys. ©2016 Dongshuang Wu, Kohei Kusada, Hiroshi Kitagawa

A study published in the journal Science and Technology of Advanced Materials reviewed the latest research into the fabrication of Pd-Ru bimetallic nanomaterials.

Early research from the past two decades showed that simply combining Pd and Ru nanoparticles led to a mixture with better properties for industrial catalytic purposes than either of the two elements alone. Since then, many groups have reported on Pd-Ru alloy nanoparticles. By varying the fabrication methods and compositions of Pd and Ru, Pd-Ru nanomaterials with different properties arise that can be suitable in industrial applications.

In 2010, Hiroshi Kitagawa from Japan’s Kyoto University and colleagues fabricated a “solid-solution alloy” (involving the addition of the atoms of one element to the crystalline lattice of the other in a high-temperature reaction) from two neighbour elements of Pd in the periodic table, silver (Ag) and rhodium (Rh). The resultant material had attractive properties for industrial purposes, including the ability to absorb hydrogen. Rh is important in a variety of reactions in the automotive industry as well as industrial exhaust gas treatment. But it is scarce and expensive. The success of Ag-Rh led the team to speculate that, due to their similarities, combining Pd and Ru into solid-solution alloy nanoparticles might lead to a material with similar properties, providing a potential alternative to Rh.

In 2014, the team was the first to synthesize Pd-Ru solid-solution alloy nanoparticles. They found the Pd-Ru nanoparticles had higher catalytic activities compared to Ru or Pd nanoparticles. More recently, they found these nanoparticles were highly active in a catalytic process important for purifying harmful gases from exhaust gas – even outperforming Rh nanoparticles.

Further research is needed to understand how varying the size of bimetallic material affects its physical and chemical properties. For example, research has found that growing less than five ultrathin Pd films on Ru causes the resultant material to be inert to oxygen even though Pd itself is highly reactive to it. Theoretical modelling will also be important for predicting and explaining the properties of PdRu and other nanomaterials, the study concludes.

For further information please contact:

Dongshuang Wu, Kohei Kusada, Hiroshi Kitagawa*
Division of Chemistry, Graduate School of Science, Kyoto University,
Kitashirakawa, Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
*E-mail: kitagawa@kuchem.kyoto-u.ac.jp

Article information

“Recent progress in the structure control of Pd–Ru bimetallic nanomaterials”,
Dongshuang Wu, Kohei Kusada, Hiroshi Kitagawa
Science and Technology of Advanced Materials Vol. 17 (2016) p. 1221727

Published online: 19 Sep 2016
http://tandfonline.com/doi/full/10.1080/14686996.2016.1221727

Journal Information
Science and Technology of Advanced Materials (STAM) is the leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international materials community across the disciplines of materials science, physics, chemistry, biology as well as engineering.

The journal covers a broad spectrum of materials science research including functional materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications

http://tandfonline.com/loi/tsta20#.VrgX82fotYU 

For more information about the journal Science and Technology of Advanced Materials, contact

Mikiko Tanifuji
Publishing Director
Science and Technology of Advanced Materials
Email: TANIFUJI.Mikiko@nims.go.jp

Associated links

Mikiko Tanifuji | Research SEA

More articles from Materials Sciences:

nachricht Machine-learning predicted a superhard and high-energy-density tungsten nitride
18.07.2018 | Science China Press

nachricht In borophene, boundaries are no barrier
17.07.2018 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>