Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New coating evicts biofilms for good

31.07.2012
Slippery technology shown to prevent more than 99 percent of harmful bacterial slime from forming on surfaces

Biofilms may no longer have any solid ground upon which to stand.

A team of Harvard scientists has developed a slick way to prevent the troublesome bacterial communities from ever forming on a surface. Biofilms stick to just about everything, from copper pipes to steel ship hulls to glass catheters. The slimy coatings are more than just a nuisance, resulting in decreased energy efficiency, contamination of water and food supplies, and—especially in medical settings—persistent infections. Even cavities in teeth are the unwelcome result of bacterial colonies.

In a study published in the Proceedings of the National Academy of Sciences (PNAS), lead coauthors Joanna Aizenberg, Alexander Epstein, and Tak-Sing Wong coated solid surfaces with an immobilized liquid film to trick the bacteria into thinking they had nowhere to attach and grow.

"People have tried all sorts of things to deter biofilm build-up—textured surfaces, chemical coatings, and antibiotics, for example," says Aizenberg, Amy Smith Berylson Professor of Materials Science at the Harvard School of Engineering and Applied Sciences (SEAS) and a Core Faculty Member at the Wyss Institute for Biologically Inspired Engineering at Harvard. "In all those cases, the solutions are short-lived at best. The surface treatments wear off, become covered with dirt, or the bacteria even deposit their own coatings on top of the coating intended to prevent them. In the end, bacteria manage to settle and grow on just about any solid surface we can come up with."

Taking a completely different approach, the researchers used their recently developed technology, dubbed SLIPS (Slippery-Liquid-Infused Porous Surfaces) to effectively create a hybrid surface that is smooth and slippery due to the liquid layer that is immobilized on it.

First described in the September 22, 2011, issue of the journal Nature, the super-slippery surfaces have been shown to repel both water- and oil-based liquids and even prevent ice or frost from forming.

"By creating a liquid-infused structured surface, we deprive bacteria of the static interface they need to get a grip and grow together into biofilms," says Epstein, a recent Ph.D. graduate who worked in Aizenberg's lab at the time of the study.

"In essence, we turned a once bacteria-friendly solid surface into a liquid one. As a result, biofilms cannot cling to the material, and even if they do form, they easily 'slip' off under mild flow conditions," adds Wong, a researcher at SEAS and a Croucher Foundation Postdoctoral Fellow at the Wyss Institute.

Aizenberg and her collaborators reported that SLIPS reduced by 96% the formation of three of the most notorious, disease-causing biofilms—Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus—over a 7-day period.

The technology works in both a static environment and under flow, or natural conditions, making it ideally suited for coating implanted medical devices that interact with bodily fluids. The coated surfaces can also combat bacterial growth in environments with extreme pH levels, intense ultraviolet light, and high salinity.

SLIPS is also nontoxic, readily scalable, and—most importantly—self-cleaning, needing nothing more than gravity or a gentle flow of liquid to stay unsoiled. As previously demonstrated with a wide variety of liquids and solids, including blood, oil, and ice, everything seems to slip off surfaces treated with the technology.

To date, this may be the first successful test of a nontoxic synthetic surface that can almost completely prevent the formation of biofilms over an extended period of time. The approach may find application in medical, industrial, and consumer products and settings.

In future studies, the researchers aim to better understand the mechanisms involved in preventing biofilms. In particular, they are interested in whether any bacteria transiently attach to the interface and then slip off, if they just float above the surface, or if any individuals can remain loosely attached.

"Biofilms have been amazing at outsmarting us. And even when we can attack them, we often make the situation worse with toxins or chemicals. With some very cool, nature-inspired design tricks we are excited about the possibility that biofilms may have finally met their match," concludes Aizenberg.

Aizenberg and Epstein's coauthors included Rebecca A. Belisle, research fellow at SEAS, and Emily Marie Boggs '13, an undergraduate biomedical engineering concentrator at Harvard College. The authors acknowledge support from the Department of Defense Office of Naval Research; the Croucher Foundation; and the Wyss Institute for Biologically Inspired Engineering at Harvard University.

Michael Patrick Rutter | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Materials Sciences:

nachricht In borophene, boundaries are no barrier
17.07.2018 | Rice University

nachricht Research finds new molecular structures in boron-based nanoclusters
13.07.2018 | Brown University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>