Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New clues in the search to rediscover the mysterious Maya Blue formula

02.04.2013
The recipe and process for preparing Maya Blue, a highly-resistant pigment used for centuries in Mesoamerica, were lost. We know that the ingredients are a plant dye, indigo, and a type of clay known as palygorskite, but scientists do not know how they were 'cooked' and combined together. Now, a team of chemists from the University of Valencia and the Polythecnic University of Valencia (Spain) have come up with a new hypothesis about how it was prepared.

Palace walls, sculptures, codices and pieces of pottery produced by the ancient Maya incorporate the enigmatic Maya Blue. This pigment, which was also used by other Mesoamerican cultures, is characterised by its intense blue colour but, above all, by the fact that it is highly resistant to chemical and biological deterioration. Indeed, it was used centuries ago and when it is analysed now it appears virtually unchangeable.

There is no document that verifies how this paint was prepared and so it remains a mystery. Archaeologists and scientists have sought to uncover the mystery in recent years but it seems that researchers cannot come to an agreement.

The dominant theory proposes that there is a single type of Maya Blue that was also prepared in a unique way and that a specific type of bond binds the two components: one organic component, indigo -the dye used for denim that is obtained from the Indigofera suffruticosa plant in Mesoamerica– and another inorganic component, palygorskite, a type of clay characterised by its crystal structure full of internal channels.

But the work of a team from the University of Valencia (UV) and the Polytechnic University of Valencia (UPV) seem to contradict this 'monoist' version. "We detected a second pigment in the samples, dehydroindigo, which must have formed through oxidation of the indigo when it underwent exposure to the heat that is required to prepare Maya Blue," stated Antonio Doménech, a UV researcher.

"Indigo is blue and dehydroindigo is yellow," the expert explained, "therefore the presence of both pigments in variable proportions would justify the more or less greenish tone of Maya Blue. It is possible that the Maya knew how to obtain the desired hue by varying the preparation temperature, for example heating the mixture for more or less time or adding more of less wood to the fire."

Another of the unsolved questions is how the dye molecules are distributed in palygorskite's crystal network. According to some scientists, the indigo adheres to the exterior of the clay structure with the 'brick' shape although it could also form a sort of 'cover' on the entrance to the channels.

However, other researchers believe that the indigo penetrates into the channels. This is the theory supported by the team from Valencia that has just published a study in the "Microporous and Mesoporous Materials" journal on the reactions that could be behind the formation of the blue pigment.

Two-stage process

The results reveal that two stages occur when both components are heated to temperatures between 120 and 180 ºC. In the first and fastest of the two stages water evaporates from the palygorskite and the indigo bonds to the clay, although a part oxidises and forms dehydroindigo.

In the second stage it would appear that the dye disperses through the channels in the clay. "The process is similar to what happens when we pour a drop of ink into a glass of water," Doménech said, drawing a comparison, although he acknowledges that "this is a hypothesis" at present.

The researcher's team, like other groups in other parts of the world, is also investigating the secret of the unknown chemical bonds that bind the organic to the inorganic component. These bonds are the reason behind Maya Blue's resistance.

In addition to palaces and buildings of the Maya nobility, this pigment is traditionally associated with ritual ceremonies conducted by priests, and may even have been used during human sacrifices. Containers holding traces of the pigment found at the bottom of some natural and man-made wells on the Yucatán peninsula point to this ceremonial use.

Studies such as the one published by US anthropologists in 2008 on a bowl found in the Sacred Cenote of Chichén Itzá led some media outlets to state that the mystery of Maya Blue had been solved. "The bowl contained Maya Blue mixed with copal incense so the simplified conclusion was that it was only prepared by warming incense," stated Doménech.

The researcher believes that the composition and function of Maya Blue could have varied down through the centuries: "Although quite a few samples would be required, it could be possible to establish the evolution in its properties and preparation throughout the Maya culture from approximately 150 B.C. to 800 A.D., in such a way that we could establish a chronology based on analysing the pigment. This provides a far more 'flexible' view of this culture, breaking with that traditional monolithic view of inflexible ritualism."

Small greenish balls in La Blanca

In support of this view, the team also recently found other pigments that are different from Maya Blue but follow the same pattern of a plant dye combined with clay. They found small greenish balls with this material in the ancient Maya city of La Blanca, modern day Guatemala, and it is assumed they were used to plaster and decorate the walls of palatial buildings.

"These materials were certainly not within the reach of the common people but they signal a more 'everyday' use of the pigments that would not have had to be restricted to ritual or ceremonial activities," Doménech pointed out and said by way of conclusion: "Maya Blue can be considered a polyfunctional material as it can combine different organic components with an inorganic carrier, which, in addition, can be distributed and react differently, thereby producing functions that are also different."

References:

Antonio Doménech, María Teresa Doménech-Carbó, Laura Osete-Cortina, Noemí Montoya. "Application of solid-state electrochemistry techniques to polyfunctional organic-inorganic hybrid materials: The Maya Blue problem". Microporous and Mesoporous Materials 166 (15): 123, 2013.

SINC | EurekAlert!
Further information:
http://www.fecyt.es

More articles from Materials Sciences:

nachricht Research finds new molecular structures in boron-based nanoclusters
13.07.2018 | Brown University

nachricht 3D-Printing: Support structures to prevent vibrations in post-processing of thin-walled parts
12.07.2018 | Fraunhofer-Institut für Produktionstechnologie IPT

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>