Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ceramics Made of “Sand” from the Red Planet


TU Berlin scientists craft complex geometric shapes from simulated Martian soil

Researchers from the TU Berlin Chair of Ceramic Materials collaborated with the Federal Institute for Materials Research and Testing to produce complex components from simulated Martian soil for the first time, demonstrating the theoretical possibility of creating stable vessels like vases solely using resources from the red planet.

Vases, rings, and tablets made from simulated Martian soil in various stages of firing

© TU Berlin/David Karl

Their results have been published in the open access journal “PLOS One.” Through their approach, the researchers aim to contribute to the research on the long-term exploration of Mars.

Ambitious goals: The American space agency NASA, together with its international partners, aims to send the first manned mission to Mars in the 2030s – a journey into the depths of space which will be closely followed by researchers worldwide.

A team from the TU Chair of Ceramic Materials in the Institute of Material Science and Technology located in Faculty III - Process Sciences, is also undertaking experiments which focus on a potential trip to Mars.

Simulated Martian soil from volcanic earth enables the manufacture of complex, geometric molds that can be used as storage containers

For their publication “Towards the colonization of Mars by in-situ resource utilization: Slip cast ceramics from Martian soil simulant,” the scientists produced complex geometric shapes, such as rings and vases, using “JSC-Mars-1A,” a simulant of Martial soil.

The material, modeled after Martial soil or regolith, is of volcanic origin, from the sides of the highest mountain in Hawaii, Mauna Kea. The materials were developed by the NASA Johnson Space Center and made available to the scientific community for so-called in-situ resource utilization, ISRU for short. Its properties simulate those of the Martian regolith.

Resource Utilization of Local Materials as a Foundation

Mars and Earth are between 56 and 401 million kilometers apart. It could take up to eight months to reach Mars, according to current estimates. “In the event of a stay on Mars, it will be important for astronauts to be able to manufacture their own products using local materials.

This practice is called in-situ utilization and is the foundation of our trials,” explains David Karl. He and Franz Kamutzki are the project coordinators of the study. Both are research assistants in the team led by the head of Chair, Professor Aleksander Gurlo.

“Our ‘Martian ceramic’ is composed of soil chemically similar to that of Mars. We ground the Martian simulant with just water, poured it into a cast, and fired it,” states Kamutzki, describing the approach. “We only used ‘Martian soil,’ plaster, water, and energy – all resources which are present on Mars or can be created.

The Process: Mix with Water, Grind, Fire

“In the beginning, we put the material through a number of preliminary processes: We heat-treated it and pre-ground and pre-sifted it, added organic additives in the form of dispersants and binding agents, and in the end, determined, that the conceivably easiest version is the most stable,” says Karl.

The scientists combined the Martian simulant with water in a ratio of 50:50 and ground it for 48 hours. The resulting slip was then poured into casts – like those for vases – and, after a short time, removed, air-dried, and fired at different temperatures ranging from 1000 to 1130 degrees Celsius. The result is ceramic parts which, depending on the firing temperature, show evidence of similar or even higher pressure resistance compared to porcelain.

“We were very surprised by the positive mechanic properties of our Martian ceramics – theoretically they are interesting for all applications, for which porcelain and earthenware are currently used: from dishes to technical building components or materials,” says Kamutzki, summarizing the significance of the experiments.

Visions of the Future: Fully Automatic Process Would Offer Possibility of Creating Building Parts with Flexible Geometry Through 3D Printing

In response to the question what purpose vases could have on Mars, the scientists explain: “In the conceptual phase of our project, we discussed at length which tools would be crucial for human colonization of Mars. In the end, we agreed on a geometric shape for our ‘Martian ceramics,’ which was produced, used, and left behind by all cultures in the history of human civilization and is still in use around the world today.”

The team also emphasizes that many other complex shapes could be produced using the process developed. The slip casting with plaster molds is suitable for the large-series production of items with similar geometry. Currently, the team is working on new processes, in which the developed slip system is being processed through 3D printing. Theoretically, a remote-controlled or fully automatic process would offer the possibility of creating building parts with flexible geometry – even before humans set foot on Mars.


The project’s initial results were published in the open access journal “PLOS One”.

“Towards the colonization of Mars by in-situ resource utilization: Slip cast ceramics from Martian soil simulant”. David Karl, Franz Kamutzki, Andrea Zocca, Oliver Goerke, Jens Guenster, Aleksander Gurlo (2018):

Photo material available for download:

Further information available from:

David Karl
Technische Universität Berlin
Institute of Material Science and Technology
Tel.: +49 (0)30 314-22368

Stefanie Terp | idw - Informationsdienst Wissenschaft

Further reports about: Ceramics Mars Martian Martian ceramic Red Planet ceramic materials

More articles from Materials Sciences:

nachricht Carbon-loving materials designed to reduce industrial emissions
06.07.2020 | DOE/Oak Ridge National Laboratory

nachricht Thermophones offer new route to radically simplify array design, research shows
03.07.2020 | University of Exeter

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

Latest News

Coupled hair cells in the inner ear – „Together we are strong!“

06.07.2020 | Health and Medicine

Innovations for sustainability in a post-pandemic future

06.07.2020 | Social Sciences

Carbon-loving materials designed to reduce industrial emissions

06.07.2020 | Materials Sciences

Science & Research
Overview of more VideoLinks >>>