Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell collection: Catapulting with Near-IR Laser light

05.09.2011
Research shows how to use infra-red laser to selectively separate cel

The selective detachment of the cells is achieved by the near-IR (NIR) irradiation of the cells cultured on a dish coated by single-walled carbon nanotubes (SWNTs). The shockwave generated by the NIR pulse laser irradiation of the SWNTs plays an important role in the detachment of the cell.

By increasing the laser power as well as decreasing the depth of the cultured medium, the detached cells are readily catapulted onto the substrate placed close to the medium surface.

Such a catapulting method enables the highly-selective collection of the targeted cells of interest and is a very useful tool for single cell studies. The scanning electron microscope and PCR experiments revealed that no fragmentation occurred for the catapulted cell.

The real-time PCR analysis for the catapulted single cell revealed the retention of the genetic information.

On July 6, 2011, our article iT. Sada, T. Fujigaya, Y. Niidome, K. Nakazawa, N. Nakashima, "Near-IR Laser-triggered Target Cell Collection Using a Carbon Nanotube-based Cell-cultured Substrate", ACS Nano, 2011, 5, 4414-4421. IF=9.855 ) was introduced in Nature Nanotechnology, research highlights.

This article first appeared in the August 2011 issue of Nanotech Japan Bulletin

Mikiko Tanifuji | Research asia research news
Further information:
http://nanonet.nims.go.jp/english/modules/basenews/article.php?a_id=403
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Molecular switch detects metals in the environment
15.08.2018 | Université de Genève

nachricht Breakthrough in nanoresearch - Quantum chains in graphene nanoribbons
09.08.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>