Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cartilage Comeback

11.10.2010
Materials Scientists from Jena University (Germany) fight Arthrosis and Osteoporosis

At some point it catches up with everyone. With increasing age joints and bones wear out. When for instance the cartilage, functioning as cushions between the joints becomes worn out, in most cases only the surgeon implanting a replacement part helps. Until now at least.

Scientists of the german Jena University – together with colleagues from France, England, Germany and Switzerland – are working on a tiny device that is being implanted in the joint and is supposed to trigger the regeneration of cartilage produced naturally in the body. The project OPHIS (Composite Phenotypic Triggers for Bone and Cartilage Repair) is subsidized with 4 Million Euro from the EU, of which 350.000 go to the Jena University. The project is running for four years.

Mostly Arthrosis and Arthritis patients will be able to profit by the results of the project, as the regeneration of the cartilage can be reactivated on smaller lacerations when the doctor recognizes the illnesses early enough. “Even though there are products like this on the market,” says Prof Dr Frank Müller, Materials Scientist of the Jena University. “None of them adheres actively with the bone underneath. This is exactly the improvement of our implant.”

The cellulose implant, of one centimeter diameter, is sponge-like and has two different surfaces. “The implant can substantially adhere to the bone through inorganic activation with calcium phosphate-nanoparticles on its lower surface,” explains the Jena Professor for Science and Technology of Surfaces and Interfaces.

“Scientists of another sub-project in Brighton in England apply growth factors on the opposite, porous surface of the implant to trigger the regeneration and ingrowth of cartilage cells.” Materials scientists of Jena University are able to produce the required porous surfaces with an especially developed process via ice templating. “For that purpose vegetal cellulose is being dissolved in water containing solvent and then deep-frozen at a defined speed,” says Prof Müller. “The ice crystals are so grown at a controllable temperature gradient. Afterwards the cellulose is being freeze-dried, so that little holes – pores – take the place of the ice cristals, as the water is being changed from a solid to a gaseous aggregate state. So a micro porous surface is created according to a given specification.” A facility especially for this process had been constructed in Jena.

Apart from cellulose implants composites from cellulose and collagen are being tested. These are even more promising, as the structural protein collagen is an important organic part of the connective tissue and thereby also of the bone and cartilage.

Moreover the scientists of the research project are aiming to fighting osteoporosis. Again tiny implants are supposed to stop the bone loss and to trigger the bone growth. These implants constist of bacterial cellulose, which is developed in co-operation with the research group of Dr Dana Kralisch at the Institute for Technical Chemistry and Environmental Chemistry at the Jena University. “Certain bacterial strains use glucose in their culture medium to produce cellulose,“ the project manager of Jena University explains. “When you influence the production by a shaking movement of the fluid, small pellets will form. These structures which are porous by nature are provided with defined protein sequences – so-called peptides – and are implanted into the bone. Bone forming cells migrate and the bone growth is re-stimulated.“

Contact:
Prof Dr Frank A. Müller
Institute of Materials Science and Technology
Friedrich-Schiller-University Jena
Löbdergraben 32
D-07743 Jena
Phone: 0049 3641 947750
Email: Frank.Mueller[at]uni-jena.de

Sebastian Hollstein | idw
Further information:
http://www.uni-jena.de/en/start_en.html

More articles from Materials Sciences:

nachricht Novel sensors could enable smarter textiles
17.08.2018 | University of Delaware

nachricht Quantum material is promising 'ion conductor' for research, new technologies
17.08.2018 | Purdue University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Metamolds: Molding a mold

20.08.2018 | Information Technology

It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

20.08.2018 | Power and Electrical Engineering

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>