Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bone tissue engineering: Attaching proteins for better regeneration

27.07.2012
Researchers in Japan demonstrate a new protein binding approach for effectively promoting bone regeneration.

Current treatments for bone defects and bone tissue regeneration have significant limitations. Now a new method that immobilises a fusion protein in a hybrid collagen-polymer supportive scaffold shows promise for bone tissue engineering.

Guoping Chen, Yoshihiro Ito and researchers at the Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, RIKEN, the Immuno-Biological Laboratories Co., Ltd, and the National Institute for Child Health and Development, Tokyo, added a collagen-binding domain from fibronectin to BMP4, a protein that promotes bone regeneration.

The new fusion protein, BMP4-CBD, was used in a scaffold of natural collagen sponge and a strong synthetic polymer, poly(lactic-co-glycolic acid) (PLGA). The scaffold provides space and support for the bone cell growth.

The researchers investigated the BMP4-CBD immobilized on the collagen-PLGA scaffold cultured in vivo for four weeks. They compared the approach with a range of controls including scaffolds with wild-type BMP4 without the collagen-binding domain and scaffolds with just the collagen-binding domain. The expression of specific and non-specific osteogenetic markers used as indicators of bone tissue regeneration was much higher for BMP4-CBD. Using BMP4-CBD also initiated calcification.

“These effects should be attributed to the retention of more effective molecules due to the specific binding of the fusion BMP4 to the collagen,” say the authors. The stimulation effect of the protein promoting the bone regeneration is thus maintained over a longer period. The research may benefit patients suffering from bone defects in the future.

Further information

Publications and Affiliation:

Hongxu Lu1, Naoki Kawazoe1, Takashi Kitajima2, Yuka Myoken3, Masahiro Tomita 3, Akihiro Umezawa4, Guoping Chen1*, Yoshihiro Ito2* Spatial immobilization of bone morphogenetic protein-4 in a collagen-PLGA hybrid scaffold for enhanced osteoinductivity. Biomaterials, 33, 6140–6146, (2012).

1. Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
2. Nano Medical Engineering Laboratory, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako 351-0198, Japan
3. Neosilk Laboratory, Immuno-Biological Laboratories Co., Ltd., 3-13-60 Kagamiyama, Higashihiroshima, Hiroshima 739-0046, Japan
4. National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan

* Corresponding authors


Contact details

International Center for Materials Nanoarchitectonics(WPI-MANA)
1-1 Namiki, Tsukuba-shi Ibaraki, 305-0044 Japan
Email: Guoping Chen, Ph.D Guoping.CHENnims.go.jp
Telephone: +81-29-860-4496

Adarsh Sandhu | Research asia research news
Further information:
http://www.nims.go.jp/mana/

More articles from Materials Sciences:

nachricht Carbon fiber can store energy in the body of a vehicle
18.10.2018 | Chalmers University of Technology

nachricht Goodbye, silicon? On the way to new electronic materials with metal-organic networks
17.10.2018 | Max-Planck-Institut für Polymerforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>