Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bonded aircraft

09.09.2008
An aircraft is held together by hundreds of thousands of rivets. Fully automatic machines install rivet holes and rivets with precision in numerous materials. A new hybrid technology combines this mechanical joining technique with adhesive bonding.

The lighter an aircraft is, the less fuel it consumes. Given the need to cut carbon dioxide emissions, this is a key aspect of materials research. Aircraft manufacturers are therefore pinning their hopes on particularly lightweight construction materials.

These include not only lightweight metals, but also fiber composite plastics, particularly carbon-fiber reinforced plastics (CFRPs). Whenever two CFRP components have to be joined together, this has so far been accomplished primarily by riveting.

Researchers at the Fraunhofer Institute for Manufacturing Technology and Applied Materials Research IFAM in Bremen are experts in adhesive techniques and plan to enlarge their expertise to include mechanical joining. At the Composites Europe trade fair in Essen from September 23 through 25, 2008, they will be presenting a state-of-the-art C-clamp riveting machine (Hall 10-11, Stand 150). This device enables the necessary rivet holes, complete with one- or two-part riveted bolts, to be installed accurately and automatically in compliance with aviation standards.

The IFAM researchers now intend to go a step further. “Rivet holes are a problem, particularly in CFRP structures,” explains Dr. Oliver Klapp of the IFAM. “They disturb the flow of forces in the CFRP structures and reduce the load-bearing capacity of the material.” The researchers are therefore planning to make use of adhesive bonding processes that are already employed for CFRP materials. “But the aviation industry is not yet ready to rely exclusively on bonded components and assemblies,” says Klapp.

This is why the engineers are exploring the potential of hybrid joining – a combination of riveting and a special bonding process. The advantages of hybrid joining are obvious: the CFRP materials are not riddled with so many rivet holes. The particularly high load-bearing capacity of these materials is more effectively brought to bear in the truest sense of the word, because bonding results in a more effective, all-over distribution of forces. The researchers are currently optimizing the parameters of the joining process.

“It’s true that riveting will not be eliminated from aircraft construction in the next several years,” says Klapp. But the aviation industry will soon be unable to manage without structural bonding of primary structures such as the airframe, the wings and the tail units.

Dr. Oliver Klapp | Fraunhofer-Gesellschaft
Further information:
http://www.fraunhofer.de
http://www.fraunhofer.de/EN/press/pi/2008/09/ResearchNews092008Topic5.jsp

More articles from Materials Sciences:

nachricht Machine learning methods provide new insights into organic-inorganic interfaces
04.08.2020 | Technische Universität Graz

nachricht Unusual electron sharing found in cool crystal
31.07.2020 | Nagoya University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Manifestation of quantum distance in flat band materials

05.08.2020 | Physics and Astronomy

Discovery shows promise for treating Huntington's Disease

05.08.2020 | Health and Medicine

Rock debris protects glaciers from climate change more than previously known

05.08.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>